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Detecting Out-of-Distribution Inputs to Deep
Generative Models Using Typicality
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Deep Generative Models and Out-of-Distribution Inputs

Nalisnick et al. [ICLR 2019] showed that the likelihood of Yet when we sample from the generative model, the
deep generative models cannot distinguish the training outputs conspicuously resemble the training data,

data from out-of-distribution (OOD) inputs. not the OOD inputs.
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Consider a high-dimensional Gaussian centered We conjecture that a similar phenomenon is
on the all-gray image... happening with high-dimensional deep
generative models...
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\Y (el 1]’ A Goodness-of-Fit Test for OOD Detection

Due to deep generative models having an intractable cumulative distribution function (CDF), we propose detecting
OOD inputs via a hypothesis based off of Shannon’s [1948] definition of typical sets.

Algorithm 1 A Bootstrap Test for Typicality

Dejginition 2.1, Ne-Typical Set [11] For a distribution p(X) with support x € X, the e-typical set Input: Training data X, validation data X', trained model p(x; @), number of bootstrap samples K,
Al [p(x)] € X is comprised of all N-length sequences that satisfy significance level a, M-sized batch of possibly OOD inputs X .

Offtine prior to deployment

1. Compute H” [p(x; 0)] = = SN logp(xn; 0).

2. Sample K M-sized data sets from X’ using bootstrap resampling.
3.Forallk € [1, K]:

where H|p(x [—log p(x)]dx and € € RY is a small constant. Compute &, = | =2 =M log p(x} m; 0) — AN [p(x; 0)]| (Equation 7)
4. Set €)' = quantile(F(e),a) (e.g. a=.99)
For an M-sized test batch X {a;h . fiM} Online during deployment

If | L SM_ log p(&m) — HY [p(x; 0)]| > €l

1if X - Aé\/l [p(x; 9)] then X ~ p(X, 9), otherwise X/ 76 p(x, 0) Return X is out-of-distribution

Els;:emm X is in-distribution
Experiment Fraction of M-Sized Batchoes e Our test for typicality detects many
oo Classified as OOSD (0=99%) of the OOD sets found problematic
— bl il BT e e SRR in Nalisnick et al. [ICLR 2019].
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e Relies on the distribution of model
likelihoods being well separated.

e ArXiv Link:
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