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Nalisnick et al. [ICLR 2019] showed that the likelihood of 
deep generative models cannot distinguish the training 
data from out-of-distribution (OOD) inputs.

Yet when we sample from the generative model, the 
outputs conspicuously resemble the training data, 
not the OOD inputs.
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Consider a high-dimensional Gaussian centered 
on the all-gray image...
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We conjecture that a similar phenomenon is 
happening with high-dimensional deep 
generative models...

Due to deep generative models having an intractable cumulative distribution function (CDF), we propose detecting 
OOD inputs via a hypothesis based off of Shannon’s [1948] definition of typical sets. 
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● Our test for typicality detects many 
of the OOD sets found problematic 
in Nalisnick et al. [ICLR 2019].

● Relies on the distribution of model 
likelihoods being well separated.

● ArXiv Link:
https://arxiv.org/abs/1906.02994
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