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Background



What do we mean by Predictive Uncertainty?
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● Predict output distribution p(y|x) 

rather than point estimate, e.g. 

○ Classification: output label along 

with confidence 

○ Regression: output mean and 

variance
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Image credit: Eric Nalisnick



Sources of uncertainty: Inherent ambiguity 

● Noise in the labeling process (humans 
disagree on the label, e.g. CIFAR-10-H)

● Measurement noise in y
● Also known as aleatoric uncertainty
● Considered to be “irreducible uncertainty” 

○ Persists even in the limit of infinite data
○ Partial observability: could be reduced 

given additional features

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”



Sources of uncertainty: Model uncertainty

● Multiple parameters could be consistent with 

the observed training data

● Also known as epistemic uncertainty

● Considered to be “reducible uncertainty”

○ Vanishes in the limit of infinite data 

(subject to model identifiability)



How do we measure the quality of uncertainty?

Calibration measures how well predicted 
confidence (probability of correctness) aligns with 
the observed accuracy.

● Expected Calibration Error (ECE)
● Computed as the average gap between 

within-bucket accuracy and within-bucket 
predicted probability for S buckets.

● Does not reflect “refinement” (predicting 
class frequencies gives perfect calibration).
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Image source: Guo  et al. 2017 “On calibration of modern neural networks”



How do we measure the quality of uncertainty?

Proper scoring rules (Gneiting & Raftery, JASA 2007), 

● Negative Log-Likelihood (NLL)
○ Can overemphasize tail probabilities

● Brier Score 
○ Quadratic penalty (bounded range [0,1] unlike log).
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How do we measure the quality of uncertainty?

Evaluate model on 
out-of-distribution 
(OOD) inputs which 
do not belong to any 
of the existing classes

● Max confidence
● Entropy of p(y|x) 
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CIFAR-10 (i.i.d test inputs)
CIFAR-10 
classifier

SVHN  (o.o.d test inputs)

Confidence on i.i.d inputs > Confidence on o.o.d inputs ?



Motivating 
Applications



Why predictive uncertainty?

Uncertainty estimation is useful for:

● Knowing when to trust model’s predictions, especially under dataset shift
● Better decision making: Calculating the risk vs reward associated with 

prediction (worst case vs average case)
● Active learning: Getting more data in regions where the model is uncertain
● Open set recognition 
● Lifelong learning 
● Exploration in Reinforcement Learning
● … 



Dataset shift across

● Time
● Countries

Natural distribution shift

Image source: Hendrycks et al. 2020 “The Many 
Faces of Robustness: A Critical Analysis of 
Out-of-Distribution Generalization”



Open Set Recognition

● Test inputs may not belong 
to one of the existing 
training classes

● Example: genome 
classifier trained on 
species known until time t

● Need to be able to reject 
such inputs as “none of 
the above”

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Conversational Dialog systems

Image source: Larson et al. 2019 “An Evaluation Dataset for Intent 
Classification and Out-of-Scope Prediction”

● Detecting out-of-scope utterances



Medical Imaging

● Use model uncertainty to decide when to trust model vs when to defer to human. 

● Reject out-of-distribution inputs.

Diabetic retinopathy detection from fundus images 
Gulshan et al, 2016 

Eye disease classification from 3D OCT images
de Fauw et al, 2018

https://jamanetwork.com/journals/jama/fullarticle/2588763
https://www.nature.com/articles/s41591-018-0107-6


Bayesian Optimization and Experimental Design

Image source: 
https://en.wikipedia.org/wiki/Bayesian_optimization

● Exploration vs exploitation

● Use uncertainty for deciding tradeoff 
via acquisition



How do current  deep learning
models fare?



ImageNet-C: Varying Intensity for Dataset Shift

Image source: Benchmarking Neural Network Robustness to 
Common Corruptions and Perturbations, Hendrycks et al.

I.I.D test set
Increasing dataset shift

● Typically we assume training and 
test data are i.i.d. from the same 
distribution

● In practice, often violated for test 
data and distributions shift

● ImageNet-C: different types of 
corruptions with varying intensity



Models accuracy degrades under dataset shift

● Accuracy drops with 
increasing shift on 
Imagenet-C

● But do the models 
know that they are 
less accurate?

Image source: Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019



Models are not calibrated under dataset shift

● Accuracy drops with 
increasing shift on 
Imagenet-C

● Calibration 
degrades with shift
-> “overconfident  
mistakes”



Models assign high confidence predictions to OOD inputs

Image source: Nguyen et al. 2014 “Deep Neural Networks are Easily 
Fooled: High Confidence Predictions for Unrecognizable Images”

Illustration on toy binary classification (blue and orange) showing 
vanilla deep networks can assign high confidence to OOD inputs (red)

Image source: Liu et al. 2020 “Simple and Principled Uncertainty 
Estimation with Deterministic Deep Learning via Distance Awareness”

High 
uncertainty
(low 
confidence)

Low 
uncertainty
(high 
confidence)



The Probabilistic Approach



• Customized data analysis is important to many fields.

• Pipeline separates assumptions, computation, application

• Eases collaborative solutions to statistics problems

The probabilistic approach



[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]



A probabilistic model is a joint distribution of parameters      and observed 
outputs y given inputs x,

Inference about the unknowns is through the posterior, the conditional  
distribution of the parameters given observations

For most interesting models, the denominator is not tractable. We appeal to 
approximate posterior inference.

Probabilistic machine learning



1. Specify likelihood (neural net & output distribution) and prior.

2. Choose approximate inference procedure.
● Variational approximation
● MCMC
● Ensembles

3. At test time, average predictions analytically or using samples from posterior.

Recipe for the probabilistic approach



Neural Networks with SGD
A simple approach is to use a point to approximate the posterior distribution. Select the 
parameters that attain highest probability under the distribution.

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!



Methods



Bayesian Neural Networks

Two extra ingredients to neural nets w/ SGD:

1. Prior p(w)...

2. Family of distributions q(w)       to 
approximate the true posterior.

Image source: Gal+ 2015, Dusenberry+ 2020.



• VI casts posterior inference as an optimization problem.

• Posit a family of variational distributions over     such as mean-field,

• Optimize a divergence measure with respect to λ to be close to the  

posterior (such as KL).

Variational inference

Image source: Blei Mohamed Ranganath. NeurIPS tutorial 2014.



Loss function

The loss function in variational inference is

Sample from q to Monte Carlo estimate the expectation. Take gradients for SGD.

Likelihood view. The negative of the loss is known as the evidence lower bound 
(ELBO).

Code length view. Minimize the # of bits to explain the data, while trying not to 
pay many bits when deviating from the prior.



How do we select the prior?

Standard normal prior is the default. But.. it’s not great.

● It has bad statistical properties.
○ It does not leverage information about the network structure, unit-wise or layer-wise.
○ In the infinite-limit, all hidden units contribute infinitesimally to each input. [Neal 1994]

○ It’s not clear how to improve the prior for specific properties, e.g., exploration.

● It has bad optimization properties.
○ It is sensitive to parameterization.
○ It’s too strong a regularizer. The gradient signal for moving toward Normal(0, 1) dominates 

actually fitting the data. [eg Bowman+ 2015; Trippe Turner 2018]

Arguably, we have more intuition about priors in function space. [Hafner+ 2018, Sun+ 
2019; Wang+ 2019; Louizos+ 2019]



How do we select the approximate posterior?

[Peterson and Anderson 1987] [Jordan et al. 1999]

S
j

μj

Si  μi         

[Hinton and van Camp 1993]

• VI began in 80’s fitting probabilistic models with neural nets.  [Peterson & 
Anderson 1987; Hinton & Van Camp 1993; Saul+ 1995].
Used a mean-field distribution

• Mixture of mean-field distributions captures multimodality.  
[Jaakkola & Jordan 1998; Jordan+ 1999; Lawrence 2000]

• Structured factorizations maintain specific dependencies.  
[Saul & Jordan 1995; Barber & Wiegerinck 1999]

Image source: Blei, Mohamed, Ranganath. NeurIPS tutorial 2014.



Markov Chain Monte Carlo

We can approximate the posterior predictive via Monte Carlo

MCMC is a classic method to draw samples          from                 by only evaluating 
the posterior energy

via e.g. a carefully guided random walk in    .



MCMC for Neural Networks
Adopted to neural nets from statistical physics - Neal, 94

● Hamiltonian Monte Carlo (Neal, 94)
○ Often cited as “gold standard” for Bayesian neural networks
○ Full-batch gradient descent with random initial momentum

● Langevin Dynamics
○ A single step of GD (Neal, 94)
○ Stochastic Gradient Langevin Dynamics (Welling & Teh, 2011)

● Lots of literature on different methods and scaling
○ Bayesian Inference for Large Scale Image Classification (Heek & Kalchbrenner, 2020)
○ Cyclical stochastic gradient MCMC for Bayesian deep learning (Zhang et al, 2020)
○ And many more…

● Caveats
○ Typically requires tricks to make it work - see Wenzel et al., 2020
○ Impractical - requires many samples

■ Can we carry around thousands of copies of a ResNet? Introduction to MCMC for Deep Learning, Iain Murray

Hamiltonian Monte Carlo Demo
From https://github.com/chi-feng/mcmc-demo

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
https://www.ics.uci.edu/~welling/publications/papers/stoclangevin_v6.pdf
https://arxiv.org/abs/1908.03491
https://arxiv.org/pdf/1902.03932.pdf
https://arxiv.org/pdf/2002.02405.pdf
https://www.youtube.com/watch?v=Em6mQQy4wYA
https://github.com/chi-feng/mcmc-demo


Simple Baseline: Recalibration

Image source: Guo+ 2017 “On calibration of modern neural networks”

For classification, modify softmax 
probabilities post-hoc.

Temperature Scaling.

1. Parameterize output layer with scalar T.

2. Optimize T on a separate “recalibration” 
dataset.



Simple Baseline: Monte Carlo Dropout

 Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting

[Gal+ 2015]



Simple Baseline: Deep Ensembles

Idea: Just re-run standard SGD training but with 
different random seeds and average the predictions

● A well known trick for getting better accuracy 
and Kaggle scores

● We rely on the fact that the loss landscape is 
non-convex to land at different solutions

○ Rely on different initializations and SGD 
noise

Simple and Scalable Predictive Uncertainty Estimation 
using Deep Ensembles, Lakshminarayanan et al.

● Found that the uncertainty produced by an 
ensemble is surprisingly good

Randomly 
Initialize

Net 1

Randomly 
Initialize

Net 2

Randomly 
Initialize
 Net M

....

Randomly Shuffle Dataset M times

Combine predictions of M models

Inputs

https://arxiv.org/abs/1612.01474


Deep Ensembles work surprisingly well in practice 

Deep Ensembles are consistently among the best performing methods, especially under dataset shift



Variational Bayesian methods are effective at 
averaging uncertainty within a single mode, 
but fail to explore the diversity of multiple 
modes

Random init + SGD noise explores different 
modes in function space

Deep Ensembles: A loss landscape perspective, 
Fort et al.

Why do deep ensembles work well in practice?

https://arxiv.org/abs/1912.02757


But… what about compute?

An ensemble's cost for both training and testing increases linearly with the number of 
networks. This becomes untenable for large models.

Bayesian neural nets show promise for improved uncertainty estimates (and capture 
different behavior). But they underfit at scale, and are also parameter inefficient!

How can we address these challenges? 



Duplicate each example in a given mini-batch K times, and vectorize.

The model yields K outputs for each example.

BatchEnsemble
Parameterize each weight matrix as a new weight 
matrix W multiplied by the outer product of two 
vectors, r and s.

There is an independent set of r and s vectors for 
each ensemble member; W is shared.

[Wen+ 2020]

http://arxiv.org/abs/2002.06715


Rank-1 Bayesian NNs
Combine efficient ensembles with Bayesian NNs!

Rank-1 BNNs:
1. Start from BatchEnsemble’s parameterization.
2. Add priors over rank-1 weights p(r), p(s).

3. Use global mixture variational posteriors.

Bayesian NNs struggle with underfitting at scale & parameter 
inefficiency. Rank-1 BNNs aims to solve both.

[Dusenberry+ 2020]

https://arxiv.org/abs/2005.07186


Gaussian Processes
We can compute the integral                                                            analytically! 

Under Gaussian likelihood + prior and
in the limit of infinite basis functions (e.g. hidden units) -> GP

The result is a flexible distribution over functions

● Specified now by a covariance function over examples
○ Familiar with the kernel trick?

● Get a posterior on functions conditioned on data

See Rasmussen & Williams, 2006

Prior

Posterior

http://www.gaussianprocess.org/gpml/


Gaussian Processes
Distribution over functions

The observations at points           are jointly Gaussian

Specified by a mean function                              and covariance

Predictive mean and covariance given observations:

Intuition:
- A prior for smooth functions
- Similar inputs (high covariance) should have a similar outputs
- Can compute expected value and uncertainty for a test input easily



Infinite Width Deep Neural Networks are Gaussian Processes

● In the limit of infinite width + Gaussian prior converges to a GP (Neal, 94)
○ i.e. covariance is taken over the hidden layer activations

● Computing with infinite networks Williams, 97
○ Derived a covariance function for single layer with “erf” activations

● Recently renewed interest
○ Deep Neural Networks as Gaussian Processes, Lee 2018
○ Gaussian process behaviour in wide deep neural networks, Matthews 2018
○ + many more.

● It turns out they are well calibrated!
○ Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit, Adlam 

2020)

● Want to play around with infinitely wide networks? neural tangents library

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
https://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf
https://openreview.net/pdf?id=B1EA-M-0Z
https://arxiv.org/pdf/1804.11271.pdf
http://www.gatsby.ucl.ac.uk/~balaji/udl2020/accepted-papers/UDL2020-paper-115.pdf
https://ai.googleblog.com/2020/03/fast-and-easy-infinitely-wide-networks.html


Recent Work



AugMix improves calibration under shift

Better data augmentation (composing base operations and ‘mixing’ them) and enforcing consistency 
can encode invariances and improve calibration under dataset shift. (Hendrycks et al 2020)

https://arxiv.org/abs/1912.02781


AugMix improves calibration under shift

AugMix + Deep Ensembles significantly improves calibration results under data shift (Hendrycks et al 2020)
Data augmentation and self-supervised learning can provide complementary benefits to marginalization

https://arxiv.org/abs/1912.02781


Improving “single model” uncertainty

● Spectral-normalized Neural 
Gaussian process (SNGP)

○ Replace last-layer with “GP layer”
○ SNGP uncertainty increases farther 

from training data.
○ “Distance-awareness” via biLipschitz 

constraint (spectral normalization)
○ SNGP outperforms softmax on OOD 

detection benchmarks (image & text) 

● See also Deterministic Uncertainty 
Quantification (DUQ)

Deep Ensemble SNGP (single model)

Results with BERT on intent detection benchmark

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F2006.10108&sa=D&sntz=1&usg=AFQjCNGNDeyLPUPsU9_6lFpnKKCMbdNPJQ
https://arxiv.org/abs/2003.02037
https://arxiv.org/abs/2003.02037


Diverse Ensembles

Vanilla deep ensembles differ only in random seeds.
Diverse ensembles achieve better trade-off on the uncertainty-compute frontier.

Adding diversity regularizer  
to Rank-1 ensembles

Hyperparameter ensembles 
outperform vanilla ensembles

http://www.gatsby.ucl.ac.uk/~balaji/udl2020/accepted-papers/UDL2020-paper-044.pdf
http://www.google.com/url?q=http%3A%2F%2Fgo%2Fprotein-uncertainty-paper&sa=D&sntz=1&usg=AFQjCNHzjRhfo70qpAR0Nn3oVfrs9E71Lw
https://arxiv.org/abs/2006.13570
https://arxiv.org/abs/2006.13570


Open Challenges



Code 

github: google/ 
uncertainty-metrics

github: google/ 
uncertainty-baselines

github: google/edward2

http://google3/third_party/py/edward2/baselines/cifar
https://github.com/google/uncertainty-metrics
https://github.com/google/uncertainty-metrics
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://github.com/google/edward2


Probabilistic deep learning: Closing the gap between theory and practice
● How good is the Bayes posterior really, Wenzel et al. 2020?
● What are good priors over neural networks?
● What role does the choice of architecture, hyperparameters, and heuristics play?
● How do we efficiently marginalize over high-dimensional NN posteriors?
● Better understanding of out-of-distribution behavior of deep predictive models as well as 

deep generative models
● Is there a rigorous (Bayesian) interpretation of deep ensembles?

Realistic benchmarks that reflect real-world challenges
● Natural Distribution Shift on Question Answering Models [Miller+ 2020]
● Measuring Robustness to Natural Distribution Shifts in Image Classification [Taori 2020]

Open Challenges

https://arxiv.org/abs/2002.02405
https://arxiv.org/abs/2004.14444
https://arxiv.org/abs/2007.00644


Probabilistic machine learning

● Science and Statistics. G. Box. JASA 1976.
● Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models. D. Blei. Annual Reviews 2014.

Bayesian neural networks

● A practical Bayesian framework for backpropagation networks D. MacKay Neural Computation 1992
● Keeping Neural Networks Simple by Minimizing the Description Length of the Weights. G. Hinton, D. Van Camp. COLT 1993.
● An Introduction to Variational Methods for Graphical Models. M. Jordan+. Machine Learning 1999.
● Bayesian Learning for Neural Networks. R. Neal. Technical Report 1994.
● Bayesian Learning via Stochastic Gradient Langevin Dynamics. M. Welling, Y. Teh. ICML 2011.
● Weight Uncertainty in Neural Networks. C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra. ICML 2015.
● Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning Y. Gal, Z. Ghahramani ICML 2016
● Automatic Differentiation Variational Inference. A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, D. M. Blei. JMLR 2017.
● A Scalable Laplace Approximation for Neural Networks  H. Ritter, A. Botev, D. Barber ICLR 2018 
● Noise Contrastive Priors for Functional Uncertainty. D. Hafner, D. Tran, T. Lillicrap, A. Irpan, J. Davidson. UAI 2019.
● A Simple Baseline for Bayesian Uncertainty in Deep Learning W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, A. G. Wilson. NeurIPS 
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Questions?



Appendix



How should we parametrize probabilities?

Image source: Padhy  et al. 2020  “Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution 
Detection in Neural Networks”

https://arxiv.org/abs/2007.05134
https://arxiv.org/abs/2007.05134

