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Background



What do we mean by Predictive Uncertainty?

e Predict output distribution p(y|x)
rather than point estimate, e.g.
o Classification: output label along
with confidence
o Regression: output mean and

variance
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Sources of uncertainty: Inherent ambiguity

e Noise in the labeling process (humans
disagree on the label, e.g. CIFAR-10-H)
e Measurement noiseiny
Also known as aleatoric uncertainty
Considered to be “irreducible uncertainty”
o Persists evenin the limit of infinite data
o Partial observability: could be reduced
given additional features
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Image source: Battleday et al. 2019 “Improving machine
classification using human uncertainty measurements”
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Sources of uncertainty: Model uncertainty

Multiple parameters could be consistent with

the observed training data

Also known as epistemic uncertainty

Considered to be “reducible uncertainty”

©)

Vanishes in the limit of infinite data

(subject to model identifiability)
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How do we measure the quality of uncertainty?

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
Calibration measures how well predicted ' g5 5 g
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Image source: Guo et al. 2017 “On calibration of modern neural networks”
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How do we measure the quality of uncertainty?

Proper scoring rules (Gneiting & Raftery, JASA 2007),

e Negative Log-Likelihood (NLL)
o Can overemphasize tail probabilities

e Brier Score

o Quadratic penalty (bounded range [0,1] unlike log).
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How do we measure the quality of uncertainty?

Evaluate model on

out-of-distribution
(OOD) inputs which
do not belong to any

of the existing classes

Max confidence
Entropy of p(yl[x)
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CIFAR-10 (i.i.d test inputs\

CIFAR-10
classifier

/ SVHN (o.0.d test inputs)

Confidence on i.i.d inputs

2>  Confidence on 0.0.d inputs ?
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Motivating
Applications
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Why predictive uncertainty?

Uncertainty estimation is useful for:

e Knowing when to trust model’s predictions, especially under dataset shift

e Better decision making: Calculating the risk vs reward associated with
prediction (worst case vs average case)

e Active learning: Getting more data in regions where the model is uncertain

e Open set recognition

e Lifelong learning

e Exploration in Reinforcement Learning



Natural distribution shift

Dataset shift across

e Time
e Countries

Image source: Hendrycks et al. 2020 “The Many
Faces of Robustness: A Critical Analysis of
Out-of-Distribution Generalization”
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Open Set Recognition

Test inputs may not belong
to one of the existing
training classes

Example: genome
classifier trained on
species known until time t
Need to be able to reject
such inputs as “none of
the above”

Total number of bacteria classes
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Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html



https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

Conversational Dialog systems

e Detecting out-of-scope utterances

Image source: Larson et al. 2019 “An Evaluation Dataset for Intent

Classification and Out-of-Scope Prediction”
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@ What is my balance?

You have $1,847.51
across your 3 accounts.

How are my sports teams
doing?

Your last payday was on

the 1st of November.
Who has the best record
in the NBA?

Sorry, | can only answer /

questions about banking.
Figure 1: Example exchanges between a user (blue,
right side) and a task-driven dialog system for personal
finance (grey, left side). The system correctly identi-
fies the user’s query in (1), but in @ the user’s query
is mis-identified as in-scope, and the system gives an
unrelated response. In @ the user’s query is correctly
identified as out-of-scope and the system gives a fall-
back response.
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Medical Imaging & Sxmn

e Use model uncertainty to decide when to trust model vs when to defer to human.

e Reject out-of-distribution inputs.

A. HEALTHY B. DISEASED

\Hemorrhages

Diabetic retinopathy detection from fundus images Eye disease classification from 3D OCT images
Gulshan et al, 2016 de Fauw et al, 2018



https://jamanetwork.com/journals/jama/fullarticle/2588763
https://www.nature.com/articles/s41591-018-0107-6

Bayesian Optimization and Experimental Design € s

ParBayesianOptimization in Action (Round 1)

e Exploration vs exploitation P
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How do current deep learning
models fare?



ImageNet-C: Varying Intensity for Dataset Shift

e Typically we assume training and
test data are i.i.d. from the same

distribution

e |n practice, often violated for test
data and distributions shift

e ImageNet-C: different types of
corruptions with varying intensity

Image source: Benchmarking Neural Network Robustness to
Common Corruptions and Perturbations, Hendrycks et al.
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Models accuracy degrades under dataset shift g e

Brain Team
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e But do the models
know that they are
less accurate?

Image source: Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019



Models are not calibrated under dataset shift g e
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Models assign high confidence predictions to OOD inputsés &2,

robin cheetah armadillo lesser panda

centipede ] peacock jackfruit bubble

3
: ¢

3
| o 4
[
L
L
L
L

i
{3
t¢F 114
t §F Y3 —
$1%2 1% =
4 - 20

king penguin starfish l baseball electric guitar
| -~ == -]
oS- -
o= 4
S =4
= = j
=
(= = 4 £
=SS
S ® e
- - - ’
-----
freight car remote control | peacock African grey

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.
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lllustration on toy binary classification (blue and orange) showing
vanilla deep networks can assign high confidence to OOD inputs (red)

Image source: Liu et al. 2020 “Simple and Principled Uncertainty
Estimation with Deterministic Deep Learning via Distance Awareness”

Image source: Nguyen et al. 2014 “Deep Neural Networks are Easily
Fooled: High Confidence Predictions for Unrecognizable Images”



The Probabillistic Approach



The probabilistic approach

KNOWLEDGE &
QUESTION

l l

Make assumptions Discover patterns Predict & Explore
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» Customized data analysis is important to many fields.
* Pipeline separates assumptions, computation, application

 Eases collaborative solutions to statistics problems
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Discover patterns
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[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]

Predict & Explore




Probabilistic machine learning

A probabilistic model is a joint distribution of parameters @ and observed
outputs y given inputs x,

p(y.0|x)

Inference about the unknowns is through the posterior, the conditional
distribution of the parameters given observations

ply.0]x) _ ply[x)p(6)
p(y|x)  [ply,0]x)de

For most interesting models, the denominator is not tractable. We appeal to
approximate posterior inference.

p(0|x,y) =



Recipe for the probabilistic approach

1. Specify likelihood (neural net & output distribution) and prior.

2. Choose approximate inference procedure.
e \Variational approximation
e MCMC
e Ensembles

3. At test time, average predictions analytically or using samples from posterior.

p(ylz, D) = L35 p(ylz, 0))



Neural Networks with SGD

A simple approach is to use a point to approximate the posterior distribution. Select the
parameters that attain highest probability under the distribution.

Em  EEEEE
0" = argmaxp(0 | x,y) = seant
0 -
= argmax log p(@ | x,y) B
; :
= argmaxlogp(y | x,0) +logp(6)  §E

= argmin —log p(y | x,60) —log p(6)

— ' ] 2
arg min zk: p;logy, + A[6]]

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!



Methods



Bayesian Neural Networks

Two extra ingredients to neural nets w/ SGD:

1. Prior p(8).

2. Family of distributions ¢(@; \) to

approximate the true posterior.
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p(r;) = Normal

p(r;) = Cauchy; p(w;) = Horseshoe
p(r?) = InverseGamma; p(w;) =T
p(wj;) = Normal
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Imagg source: Gal+ 2015, Dusenberry+ 2020.



Variational inference p(zlx)

KL(q(z;v*) || p(z]x))

VI casts posterior inference as an optimization problem.

* Posit a family of variational distributions over @ such as mean-field,
q(0;X) = [ [ a(6:: M)

* Optimize a divergence measure with respect to A to be close to the

posterior (such as KL). Image source: Blei Mohamed Ranganath. NeurlPS tutorial 2014.



Loss function

The loss function in variational inference is
L(A) = —Ey@.n logp(y | x,0)] + KL(g(0; A) || p(0))

Sample from q to Monte Carlo estimate the expectation. Take gradients for SGD.

Likelihood view. The negative of the loss is known as the evidence lower bound
(ELBO).

—L(A) <logp(y | x) forall A € A

Code length view. Minimize the # of bits to explain the data, while trying not to
pay many bits when deviating from the prior.
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How do we select the prior?

Standard normal prior is the default. But.. it's not great.

e [t has bad statistical properties.
o It does not leverage information about the network structure, unit-wise or layer-wise.
o Inthe infinite-limit, all hidden units contribute infinitesimally to each input. [Neal 1994]
o It's not clear how to improve the prior for specific properties, e.g., exploration.

e |t has bad optimization properties.

o Itis sensitive to parameterization.
o It's too strong a regularizer. The gradient signal for moving toward Normal(O, 1) dominates
actually fitting the data. [eg Bowman+ 2015; Trippe Turner 2018]

Arguably, we have more intuition about priors in function space. [Hafner+ 2018, Sun+
2019; Wang+ 2019; Louizos+ 2019]



How do we select the approximate posterior?

[Peterson and Anderson 1987] [Jordan et al. 1999] [Hinton and van Camp 1993]

* Vlbegan in 80’s fitting probabilistic models with neural nets. [Peterson &
Anderson 1987; Hinton & Van Camp 1993; Saul+ 1995].
Used a mean-field distribution g(z; \) = Hf’zl q(zi; Ai).

* Mixture of mean-field distributions captures multimodality.
[Jaakkola & Jordan 1998; Jordan+ 1999; Lawrence 2000]

 Structured factorizations maintain specific dependencies.
[Saul & Jordan 1995; Barber & Wiegerinck 1999]

Image source: Blei, Mohamed, Ranganath. NeurlIPS tutorial 2014.



Markov Chain Monte Carlo

We can approximate the posterior predictive via Monte Carlo

p(ylz, D) = / p(y|z, 8) p(6]D) 46
p(ylz, D) =~ 37 p(y|z,00))

MCMC is a classic method to draw samples (=) from p(€|D) by only evaluating
the posterior energy

Z log p(yi|zs, 0) — log p(6)

via e.g. a carefully guided random walk in 9.
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MCMC for Neural Networks

Adopted to neural nets from statistical physics - Neal, 94

e Hamiltonian Monte Carlo (Neal, 94)

o  Often cited as “gold standard” for Bayesian neural networks
o Full-batch gradient descent with random initial momentum

e Langevin Dynamics

o  Asingle step of GD (Neal, 94)
o Stochastic Gradient Langevin Dynamics (Welling & Teh, 2011)

Hamiltonian Monte Carlo Demo
o Lots of literature on different methods and scaling From hitps://github.comchi-feng/mcme-demo
o Bayesian Inference for Large Scale Image Classification (Heek & Kalchbrenner, 2020)
o Cyclical stochastic gradient MCMC for Bayesian deep learning (Zhang et al, 2020)
o And many more...

e Caveats

o  Typically requires tricks to make it work - see Wenzel et al., 2020
o Impractical - requires many samples
[ Can we carry around thousands of copies of a ResNet?

Introduction to MCMC for Deep Learning, lain Murray



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
https://www.ics.uci.edu/~welling/publications/papers/stoclangevin_v6.pdf
https://arxiv.org/abs/1908.03491
https://arxiv.org/pdf/1902.03932.pdf
https://arxiv.org/pdf/2002.02405.pdf
https://www.youtube.com/watch?v=Em6mQQy4wYA
https://github.com/chi-feng/mcmc-demo
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Simple Baseline: Recalibration

For classification, modify softmax Uncal. - CIFAR-10 Temp. Scale - CIFAR-10
- ResNet-110 (SD) ResNet-110 (SD)
probabilities post-hoc. 1.0 .-

I Outputs

B Outputs
[ Gap

Temperature Scaling.

2 0.6
' 0.
1. Parameterize output layer with scalar T.5
S 0.4
(i) = 2T )
’ Zj exp(z;/T) 0.2

2. Optimize T on a separate “recalibration” 0.0

00 02 04 0.6 08 1.0 0.0 02 04 06 0.8 1.0
dataset.

Image source: Guo+ 2017 “On calibration of modern neural networks”



Simple Baseline: Monte Carlo Dropout
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(b) After applying dropout.

(a) Standard Neural Net

Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting

[Gal+ 2015]



Simple Baseline: Deep Ensembles

|dea: Just re-run standard SGD training but with
different random seeds and average the predictions

e A well known trick for getting better accuracy
and Kaggle scores
e We rely on the fact that the loss landscape is
non-convex to land at different solutions
o Rely on different initializations and SGD
noise

Simple and Scalable Predictive Uncertainty Estimation
using Deep Ensembles, Lakshminarayanan et al.

e Found that the uncertainty produced by an
ensemble is surprisingly good
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https://arxiv.org/abs/1612.01474
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Deep Ensembles work surprisingly well in practice

0.35-
Method

0-30- pumm vanilla Emmmmm Dropout

0.25- === LLSVI I Ensemble

[ LL Dropout I Temp Scaling

[ Deep Ensembles are consistently among the best performing methods, especially under dataset shift ]
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Why do deep ensembles work well in practice?

Variational Bayesian methods are effective at Ensembles indentify different modes
. . enp e . but ignore local uncertainty and might
averaging uncertalnty within a 3|n9|e mode, Variational methods capture not pick the best point from each mode
but fail to explore the diversity of multiple 20C8 WnioeTia ity aTound & Mo ’ R Validation
------ oy i
modes
Random init + SGD noise explores different -

modes in function space

\: °
Space of solutions

Tmi:ning
Deep Ensembiles: A loss landscape perspective,
Fort et al.


https://arxiv.org/abs/1912.02757

G e
But... what about compute?

An ensemble's cost for both training and testing increases linearly with the number of
networks. This becomes untenable for large models.

Bayesian neural nets show promise for improved uncertainty estimates (and capture
different behavior). But they underfit at scale, and are also parameter inefficient!

How can we address these challenges?
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BatchEnsemble
Parameterize each weight matrix as a new weight

matrix W multiplied by the outer product of two
vectors, rand s.

W; =W o F;, where F; = sir;r
There is an independent set of r and s vectors for
each ensemble member; W is shared.

I‘QSJ

Duplicate each example in a given mini-batch K times, and vectorize.

Y =¢(((XoS5)W)oR)

The model yields K outputs for each example.
[Wen+ 2020]



http://arxiv.org/abs/2002.06715

Rank-1Bayesian NNs @ e,

Combine efficient ensembles with Bayesian NNs!

Rank-1 BNNs:
1. Start from BatchEnsemble’s parameterization.
2. Add priors over rank-1weights p(r), p(s).

N
]

0.3 1

/Z‘
P

p(wl) — // N(W, | 07 (rSTO-)2)p(r)p(S) dr dS éke%/v Ir%terj:sité/z éke:z/v Ir%ter::sit);/ Skew Intensity

Deterministic —F— Dropout —f— BatchEnsemble —— BNN —— Rank-1

N
=]

egative Log-Likelihood
e = =
w o w
N
%4 B
Accuracy

Expected Calibration Error

3. Use global mixture variational posteriors.

1 E éi I 3 Z 0.7
w 0.4 o5
q(r) = I E Teq(Tr; Ax) £ Z/I/ S, paRY
. . i 2 b -4 2| T FSes
Bayesian NNs struggle with underfitting at scale & parameter 824~ LE 8
. . . . g £ 24 =
inefficiency. Rank-1 BNNs aims to solve both. 2 g s
o S B
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Method NLL(]) Accuracy(f) ECE(]) cNLL/cA/cECE # Parameters Skew Intensity Skew Intensity Skew Intensity
BthﬁléminiStli;i‘ 814512 Zgg 8?);(3) }ggj;g; ; ggg §22ﬁ Figure 9: Out-of-distribution performance using CIFAR-
MC D?Z;r:ute 0.160 95.9 0024 127/688/0.166  36.5M 10:Citop) anth CIEARELU0-C (Bostompyritt WRN=b<10;
MFVI BNN 0214 94.7 0029 1.46/71.3/0.181 73M
Gaussian Rank-1 BNN  0.128 96.2 0.008 0.84/76.7/0.080  36.6M [Dusenberry+ 2020]

Cauchy Rank-1 BNN 0.120 96.5 0.009  0.74/380.5/0.090 36.6M



https://arxiv.org/abs/2005.07186

Gaussian Processes

We can compute the integral p(y|z,D) = /p(y|x, 0) p(6|D) dé analytically!

Under Gaussian likelihood + prior and
in the limit of infinite basis functions (e.g. hidden units) -> GP

The result is a flexible distribution over functions

e Specified now by a covariance function over examples
o Familiar with the kernel trick?

e Get a posterior on functions conditioned on data

See Rasmussen & Williams, 2006
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Prior

Posterior


http://www.gaussianprocess.org/gpml/

Gaussian Processes

Distribution over functionsf X = R
The observations at points {Xn c X },f,bvzl are jointly Gaussian
Specified by a mean function m, : X — IR and covariance K : X x X — R

Predictive mean and covariance given observations:

w(x: {xn, a1, 0) = K(X,x)' K(X,X) !y — m(X))
Y(x, % X yn 1, 0) = K(x,x') — K(X,x) K(X,X) 'K (X,x)

Intuition:

- A prior for smooth functions

- Similar inputs (high covariance) should have a similar outputs

- Can compute expected value and uncertainty for a test input easily

@
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Infinite Width Deep Neural Networks are Gaussian Processes

e Inthe limit of infinite width + Gaussian prior converges to a GP (Neal, 94)

o i.e.covariance is taken over the hidden layer activations

e Computing with infinite networks Williams, 97
o  Derived a covariance function for single layer with “erf” activations

e Recently renewed interest

o Deep Neural Networks as Gaussian Processes, Lee 2018

o  Gaussian process behaviour in wide deep neural networks, Matthews 2018
o+ many more.

e [t turns out they are well calibrated!
o  Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit, Adlam
2020)

e Want to play around with infinitely wide networks? neural tangents library



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
https://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf
https://openreview.net/pdf?id=B1EA-M-0Z
https://arxiv.org/pdf/1804.11271.pdf
http://www.gatsby.ucl.ac.uk/~balaji/udl2020/accepted-papers/UDL2020-paper-115.pdf
https://ai.googleblog.com/2020/03/fast-and-easy-infinitely-wide-networks.html

Recent Work
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AugMix improves calibration under shift @
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Figure 4: A realization of AUGMIX. Randomly sampled operations and their compositions allow us
to explore the semantically meaningful input space around an image. Mixing these images together
produces a new image without veering too far from the original.

Better data augmentation (composing base operations and ‘mixing’ them) and enforcing consistency
can encode invariances and improve calibration under dataset shift. (Hendrycks et al 2020)



https://arxiv.org/abs/1912.02781
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AugMix improves calibration under shift

ImageNet Error Across Severities 25ImageNet Calibration Across Severities
80 1 —A— Standard —&— Standard
—~A- Standard (Ensemble) e 20 -A - Standard (Ensemble)
70 1 —e— AugMix g —8— AugMix
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= 604 w 15 A
X c
= S
S 50 ©
i 2
40 - S
wn
=
30 A o
20 - 0
0 1 2 3 4 5 0 1 2 3 4 8
Corruption Severity Corruption Severity

AugMix + Deep Ensembiles significantly improves calibration results under data shift (Hendrycks et al 2020)
Data augmentation and self-supervised learning can provide complementary benefits to marginalization



https://arxiv.org/abs/1912.02781

Improving “single model” uncertainty & s

e Spectral-normalized Neural

Gaussian process (SNGP)
o Replace last-layer with “GP layer”
o  SNGP uncertainty increases farther
from training data.

00

.

-3 -2 -1 0 1 2 3 3 1

o “Distance-awareness” via bilLipschitz Deep Ensemble SNGP (single model)
constraint (spectral normalization)
o SNGP outperforms softmax on OOD Aceneaey (1), ECEG) 00D Latency
. . Method 1 | AUROC (1) AUPR (1) | (ms/example)
detection benchmarks (image & text) Deterministic 96.5 | 00236 | 08970 07573 | 1042
MCD-GP 95.9 0.0146 |  0.9055 0.8030 88.38
DUQ 96.0 0.0585 | 09173 0.8058 15.60
R . MC Dropout 96.5 0.0210 | 0.9382 0.7997 85.62
e See also Deterministic Uncertainty  Deep Ensemble 97.5 00128 | 0.9635 0.8616 84.46
SNGP 96.6 | 0.0115 | 0.9688 08802 | 1736

Quantification (DUQ)

Results with BERT on intent detection benchmark


https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F2006.10108&sa=D&sntz=1&usg=AFQjCNGNDeyLPUPsU9_6lFpnKKCMbdNPJQ
https://arxiv.org/abs/2003.02037
https://arxiv.org/abs/2003.02037

Diverse Ensembles &,

Vanilla deep ensembles differ only in random seeds.
Diverse ensembles achieve better trade-off on the uncertainty-compute frontier.

>\0.84 o
CIFAR-10 § 0.82 K
Method ACC(1) ECE(l) KL(1) Dis(t) Qo_so
Vanilla BE 96.2 1.9% 0.038 0.506 2 4 6 8 10 12 14 16
Weight Diversity 96.2 0.9% 0.155 1.088 B ix s e e e
Function Diversity 96.3 0.9% 0.129 1.015 g ueep- ensemble
Deep Ensembles 96.6 0.9% 0.086 0.852 8 a6
©)

2 4 6 8 10 12 14 16
Ensemble size

Adding diversity reqularizer Hyperparameter ensembles
to Rank-1 ensembles outperform vanilla ensembles
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http://www.google.com/url?q=http%3A%2F%2Fgo%2Fprotein-uncertainty-paper&sa=D&sntz=1&usg=AFQjCNHzjRhfo70qpAR0Nn3oVfrs9E71Lw
https://arxiv.org/abs/2006.13570
https://arxiv.org/abs/2006.13570

Open Challenges



Code

Edward2 github: google/edward2

r B
1. Model

)~
v

[ 2. Hyperparameters ]

\
[ 3. Training dataset ]

github: google/ v
uncertainty-metrics [

[ Layers

4. Training code J

v

Uncertainty Metrics

I's + 3 5. Launch training job J j
Metrics v

[ 6. OOD datasets J
v

[ 7. Evaluation code J

v
[ 8. Launch eval job ]

-

~ Uncertainty Baselines

github: google/
uncertainty-baselines

-

- Robustness Metrics

-/

B> dustinvtran and edward-bot Retune VI baseline for CIFAR. ® Latest commit 9379556 3 hours ago

[E) README.md Retune VI baseline for CIFAR.

[£] batchensemble.py Move baselines/cifar10/ to baselines/cifar/.
[E batchensemble_model.py Move baselines/cifar10/ to baselines/cifar/.
[E) batchensemble_model_test.py Move baselines/cifar10/ to baselines/cifar/.
=) deterministic.py Move baselines/cifar10/ to baselines/cifar/.
[E deterministic_test.py Move baselines/cifar10/ to baselines/cifar/.
E) dropout.py Move baselines/cifar10/ to baselines/cifar/.
[E) dropout_test.py Move baselines/cifar10/ to baselines/cifar/.
[E) ensemble.py Move baselines/cifar10/ to baselines/cifar/.
B utils.py Move baselines/cifar10/ to baselines/cifar/.
[E) variational_inference.py Retune VI baseline for CIFAR.

[E) variational_inference_test.py Move baselines/cifar10/ to baselines/cifar/.

README.md

Wide ResNet 28-10 on CIFAR

CIFAR-10
Train/Test Train/Test Train/Test Train Runtime
Method /T AT /T cNLL/cA/cCE
NLL Accuracy Cal. Error (hours)
5 1e-3/ 99.9% / 1.29/69.8% / 1.2 (8 TPUV2
Deterministic 1e-3/0.0231
0.159 96.0% 0.173 cores)
BatchEnsemble 0.08/ 99.9% / 1.24 /69.4% / 5.4 (8 TPUV2
K 5e-5/0.0206
(size=4) 0.143 96.2% 0.143 cores)
2e-3/ 99.9% / 135/67.8%/ 1.2 (8 TPUV2
Dropout 2e-3/0.0241
0.160 95.9% 0.178 cores)
Ensemble 2e-3/ 99.9% / 1.2 (32 TPUV2
(size=4) 0.114 96.6% cores)
Variational 1e-3/ 99.9% / 146 /71.3%/ 5.5 (8 TPUV2
; 1e-3/0.029
inference 0211 94.7% 0.181 cores)

#

3 hours ago
13 days ago
13 days ago
13 days ago
13 days ago
13 days ago
13 days ago
13 days ago
13 days ago
13 days ago
3 hours ago

13 days ago

Parameters

36.5M

36.6M

36.5M

146M

73M


http://google3/third_party/py/edward2/baselines/cifar
https://github.com/google/uncertainty-metrics
https://github.com/google/uncertainty-metrics
https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines
https://github.com/google/edward2

G o,
Open Challenges

Probabilistic deep learning: Closing the gap between theory and practice

How good is the Bayes posterior really, Wenzel et al. 20207

What are good priors over neural networks?

What role does the choice of architecture, hyperparameters, and heuristics play?

How do we efficiently marginalize over high-dimensional NN posteriors?

Better understanding of out-of-distribution behavior of deep predictive models as well as
deep generative models

Is there a rigorous (Bayesian) interpretation of deep ensembles?

Realistic benchmarks that reflect real-world challenges

Natural Distribution Shift on Question Answering Models [Miller+ 2020]

Measuring Robustness to Natural Distribution Shifts in Image Classification [Taori 2020]
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Questions?



Appendix



How should we parametrize probabilities?

Google Al
glg Brain Team

N, ONERNZTION Softmax One-vs-all
Logit e Bl it o K binary classification
Parametrization s problems
o | e 1
Affine  “k — Wk fo(x) +br | po(y=k) = Y, e¥ po(y = k) = 14 e
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Image source: Padhy et al. 2020 “Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution

Detection in Neural Networks”
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