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1. INTRODUCTION
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3. TESTING OTHER DEerP GENERATIVE MODEL CLASSES
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5. DicacING DEeepPER INTO GLOW

e Discriminative models are susceptible to overconfidence on
out-of-distribution (OOD) inputs. Generative models are
widely believed to be more robust to such inputs as they
also model p(x) [Bishop, 1994/,

e We challenge this assumption,

showing that deep

generative models can assign higher density estimates to
an OOD dataset than to the training data!

implications not just for anomaly
for detecting covariate shift, open-set
earning, semi-supervised learning, etc

e This phenomenon has
detection but also
classification, active

2. MoTIVATING OBSERVATION: CIFAR-10 vs SVHN
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This phenomenon is also observed in two other classes of deep generative models:
auto-regressive (PixelCNN) and latent variable models (Variational Auto-Encoders).
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4. TESTING GLOW ON OTHER DATA SETS

We find further evidence of the phenomenon in five other data set pairs:
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To make theoretical analysis more tractable, we restrict Glow
to have constant volume (CV) transformations (w.r.t. input).
We see similar CIFAR-vs-SVHN results for this model.
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-or CV-Glow, we can approximate the difference In likelihoods

oetween the training and OOD data as follows:
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Non-negative
due to square
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The phenomenon IS
asymmetric w.r.t. datasets:

Training on SVHN and
evaluating on CIFAR-10
results In the expectec

ordering (SVHN Is assignec
higher likelihood).

This expression helps explain several observations:
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2. Constant / grayscale inputs. equivalent to non-training
moment being zero. Graying images increases likelihoods.
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1. Asymmetry. difference between 2nd moments does not
commute.

e We also observe that constant inputs have the
highest log-likelihood of any (tested) input
e Furthermore, we find that SVHN has higher likelihood

over the entire duration of training.

3. Early stopping / ensembling would not help. expression
holds true for all values of CV-Glow's parameters.
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6. SUMMARY

Bits-per-dimension (bpd)

e Ensembling generative models does not help. s R
oo w0 s 2000 8- DenSity estimates from (current) deep
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