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1. INTRODUCTION 3. CoMBINING Deep GENERATIVE MODELS AND LINEAR MODELS

5. EXPERIMENTS

e Neural networks usually model the conditional distribution | We define a model of the joint distribution p(y, x) by
p(y|x), where y denotes a label and x features. instantiating a GLM on the output of a normalizing flow:

e Generative models, on the other hand, represent the p(yn,a}n;ﬂ) :p(yn‘mn;,@, ¢) p(:cn;qb)

distribution over features p(x). ﬁf
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e Can we efficiently combine the two in a hybrid model of
the joint distribution p(y, x)?

Conditional Model Generative Model n practice, we add a weight to the flow terms to tradeoff
oetween predictive and generative behavior:
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Regressmn on Fllght Delay Data Set (N=5 million, D=8)

lays-5m-TRAIN ] MODEL RMSE | NLL |

— MONDRIAN FORESTS (SOTA) 38.38 6.91
DIGLM 40.46 5.07

Z e This data set exhibits covariate shift
- between the train and test splits.
- . o The DIGLM's p(x) component is able

0

Iog p(X to detect this shift (see left).

Classification on MNIST and SVHN
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RNVP: — Zl Zd Sl’d(X; qb)where s() are scaling operations.
Glow: — Zl Zd Sl,d(X; qb) + hlwl log |detW1|, W 1x1 params.

2. BACKGROUND

Invertible Generative Models (Normalizing Flows) | Bayesian treatment: we can place a prior on the parameters
Invertible generative models (ak.a. normalizing flows) are a of the GLM In order to quantifty model and data uncertainty.

broad class of models defined via the change-of-variables . .
formula. An initial density p(x) flows through a series of f(m’ ¢) p(z), '6 p(,@), Yn p(y”|f(m”’¢)"6)
transformations f(x) and morphs into some (usually simplen) | For 5 Gaussian prior on the GLM, the predictive model can be
prior distribution p(z). 6f trained via the closed-form marginal likelihood:
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e e Ixn(0) = E log p(Yn|xn; B, @) + Alog p(x,; @) o :
y 0+ g Discriminative (A = 0) | 81.80% | 0.67% | 0.082 | 87.74* | 29.27 0.130  Discriminative (A = 0) | 15.40* | 4.26% | 0.225 | 15.20*% | 4.60 0.998
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. e A\ controls the trade-off
~ between ply[x) and p(x).

1l - e Hybrid model is better
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(a) Discriminative Model (A = 0) (b) Hybrid Model

Semi-Supervised Learning: MNIST and Half Moons

Half-moons simulation: the
DIGLM  leverages unlabeled
data to learn a smooth decision
boundary (N=10 labeled points).

log pz(x) = logp,(f(x; @)) + log oo

Model MNISTerror ] MNISENLL| SSL  (VAT) with only
4. SIMULATION 1000 labels only 6.61% 0.276 1000 labels (2% of
Generalized Linear Models (GLMS) 1000 labels + unlabeled 0.99% 0.069 labeled data) achieves

Generalized linear models (GLMs) model the expected
response (or label) y as a transformation of the linear model
BTz where B are parameters and z are features (covariates).
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(a) Gaussian Process (b) B-DIGLM p(y|x) (c) B DIGLM p(x)
o | | " 1D regression task with heteroscedastic noise. Subfigure (a) shows a Gaussian
* Regression: [|y|z| = identity(8’ z) orocess and Subfigure (b) shows our Bayesian DIGLM. Subfigure (c) shows p(x)

6. SUMMARY

i —/L\A/\ All labeled 0.73% 0.035 <1% error on MNIST
We defined a neural hybrid model that can efficiently compute

oredictive ply|x) and generative p(x) distributions, in a single

feed-forward pass, making it a useful building block for
downstream applications of probabilistic deep learning.

e Binary Classification: [, [y|z] — logistic(,ﬂTz) earned by the same DIGLM (black line) and compares it to a KDE (gray shading). Paper. https://arxiv.org/abs/1902.02767
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