
6.   SUMMARY

3.   COMBINING DEEP GENERATIVE MODELS AND LINEAR MODELS1.   INTRODUCTION

● Neural networks usually model the conditional distribution 
p(y|x), where y denotes a label and x features. 

● Generative models, on the other hand, represent the 
distribution over features p(x).

● Can we efficiently combine the two in a hybrid model of 
the joint distribution p(y, x)?

Invertible generative models (a.k.a. normalizing flows) are a 
broad class of models defined via the change-of-variables 
formula.  An initial density p(x) ‘flows’ through a series of 
transformations f(x) and morphs into some (usually simpler) 
prior distribution p(z).
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We define a model of the joint distribution p(y, x) by 
instantiating a GLM on the output of a normalizing flow:
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4.   SIMULATION

We defined a neural hybrid model that can efficiently compute 
both predictive p(y|x) and generative p(x) distributions, in a single 
feed-forward pass, making it a useful building block for 
downstream applications of probabilistic deep learning.
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Generalized Linear Models (GLMs)

Generalized linear models (GLMs) model the expected 
response (or label) y as a transformation of the linear model 
βTz where β are parameters and z are features (covariates).
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In practice, we add a weight to the flow terms to tradeoff 
between predictive and generative behavior:

Bayesian treatment: we can place a prior on the parameters 
of the GLM in order to quantify model and data uncertainty.

For a Gaussian prior on the GLM, the predictive model can be 
trained via the closed-form marginal likelihood:

Deep Invertible 
Generalized 
Linear Model 

(DIGLM)

1D regression task with heteroscedastic noise.  Subfigure (a) shows a Gaussian 
process and Subfigure (b) shows our Bayesian DIGLM.  Subfigure (c) shows p(x) 
learned by the same DIGLM (black line) and compares it to a KDE (gray shading).

Regression on Flight Delay Data Set (N=5 million, D=8)

● This data set exhibits covariate shift 
between the train and test splits.  

● The DIGLM’s p(x) component is able 
to detect this shift (see left).

Classification on MNIST and SVHN 

● λ controls the trade-off 
between p(y|x) and p(x).

● Hybrid model is better 
able to detect the OOD 
inputs via p(x).

Semi-Supervised Learning: MNIST and Half Moons

Half-moons simulation: the 
DIGLM leverages unlabeled 
data to learn a smooth decision 
boundary (N=10 labeled points).

SSL (VAT) with only 
1000 labels (2% of 
labeled data) achieves 
<1% error on MNIST 

● Regression: 

● Binary Classification: 

                                                              Examples

Planar:                                                               where w, u are parameters. 

RNVP:                                                  where s( ) are scaling operations.

Glow:                                                                                                  , W 1x1 params.
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