Can you trust your model's uncertainty?

Evaluating Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia, Emily Fertig, Jie Ren, Zack Nado, D Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshminarayanan, Jasper Snoek

1. Motivation	4. Datasets	
Modern ML classifiers assume data was drawn i.i.d. from the target data distribution.	 We tested datasets of different modalities and types of shift.: ImageNet 16 different skew types of 5 intensities (from [Hendrycks and Dietterich, 2019]) 	
 In practice, deployed models are evaluated on non-stationary data distributions. Distributions shift (over time, seasonality, online trends, sensor degradation, etc.). 	 Fully out-of-distribution (OOD) images Celeb-A CIFAR-10 16 different skew types of 5 intensities (from [Hendrycks and Dietterich, 2019]) Fully OOD data from Streetview Housing Numbers 	Brightness Contrast Defocus Blur Elastic Transform Image: Section of the

- They are exposed to completely OOD data.
- We study the behavior of the predictive distributions of a variety of modern deep classifiers under (realistic) dataset shift.
 - Degradation of accuracy is expected, but do models remain calibrated?
 - Do models become increasingly uncertain under shift? Is uncertainty robust to shift?
 - Does calibration on the validation set help?
- We present a benchmark for uncertainty.

2. Modeling Methods

We tested a handful of scalable and well-known methods that attempt to account for uncertainty due to incomplete data (i.e. epistemic uncertainty).

- Vanilla: Baseline neural net model
- Temp-Scaling: Post-hoc calibration by temperature scaling using an in-distribution validation set.

- lext
- 20 Newsgroups (even classes as in-distribution, odd classes as shifted data)
- Fully OOD text from LM1B
- Criteo Kaggle Display Ads Challenge
- Skewed by randomizing categorical features with probability p (simulates token churn in non-stationary categorical features).

Hendrycks and Dietterich, 2019

5. Results: ImageNet

- Quality of uncertainty consistently degrades with increasing dataset shift regardless of the method.
- Better calibration and accuracy on i.i.d. test dataset does not usually translate to better calibration under dataset shift.
- Post-hoc calibration (on i.i.d validation) with temperature scaling leads to well-calibrated uncertainty on i.i.d. test and small values of skew, but is outperformed by methods that take

- **Dropout:** Monte-Carlo Dropout.
- **Ensembles:** Ensembles of *M* networks trained independently from random initializations
- SVI: Stochastic Variational Bayesian Inference.
- LL: Approx. Bayesian inference for parameters of the last layer only (i.e. LL-SVI, LL-Dropout).

Skew intensity

epistemic uncertainty into account as the skew increases.

• Deep ensembles seem to perform the best across most metrics and be more robust to dataset shift.

3. Metrics

In addition to reporting model accuracies, we also use the following metrics to evaluate predictive distributions

Expected Calibration Error (ECE)

- Computed as the average gap between within-bucket accuracy and within-bucket predicted probability for S buckets.
- Does not reflect accuracy (predicting class frequencies gives perfect calibration).

Negative Log-Likelihood (NLL)

- Proper scoring rule.
- Can overemphasize tail probabilities
 Commonly used to evaluate the quality of model uncertainty.

6. Results: Text-Classification

(a) Confidence vs Acc. (b) Confidence vs Count (c) Confidence vs Accuracy (d) Confidence vs Count

- All methods show increased entropy on skewed / OOD text.
- (a, b) correspond to a 50/50 mix of in-distribution and skewed text.
- (c, d) correspond to a 50/50 mix of in-distribution and fully-OOD text.

7. Results: Criteo Ad-Click Prediction

Brier Score

• Also a proper scoring rule.

 Quadratic penalty is more tolerant of low-probability errors than log

$$BS = \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \left[p(y | \mathbf{x}_n, \theta) - \delta(y - y_n) \right]^2$$

We also plot **accuracy-vs-confidence** to visualize the accuracy tradeoff when using prediction confidence as an OOD score.

Some experiments evaluated predictions on fully OOD examples; for this, we compare **distributions of predictive entropy**.

- SVI is promising on MNIST/CIFAR but difficult to use on larger datasets (e.g. ImageNet) and complex architectures (e.g. LSTMs).
- Relative ordering of methods is mostly consistent (except for MNIST) across our experiments.
- Deep ensembles seem to perform the best across most metrics and be more robust to dataset shift; relatively small ensemble size (e.g. 5) may be sufficient.

ArXiv Version: https://arxiv.org/abs/1906.02530