Can you trust your model’s uncertainty?
Evaluating Predictive Uncertainty Under Dataset Shift
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1. Motivation 4. Datasets

e Modern ML classifiers assume data was We tested datasets of different modalities and types of shift..
drawn Li.d. from the target data distribution. o ImageNet
o 16 different skew types of 5 intensities (from [Hendrycks and Dietterich, 2019))
e In practice, deployed models are evaluated o Fully out-of-distribution (OOD) images Celeb-A
on non-stationary data distributions. o CIFAR-10
o Distributions shift (over time, seasonality, o 16 different skew types of 5 intensities (from [Hendrycks and Dietterich, 2019))
online trends , sensor degradation, etc.). o Fully OOD data from Streetview Housing Numbers
o They are exposed to completely OOD data. o [ext
o 20 Newsgroups (even classes as in-distribution, odd classes as shifted data)
e We study the behavior of the predictive o Fully OOD text from LM1B
distributions of a variety of modern deep o Criteo Kaggle Display Ads Challenge
classifiers under (realistic) dataset shift. o Skewed by randomizing categorical features with probability p
e Degradation of accuracy is expected, but (simulates token churn in non-stationary categorical features).

Hendrycks and Dietterich, 2019

do models remain calibrated?
e Do models become increasingly uncertain 5. RGSUltS |mageNet

under shift? Is uncertainty robust to shift?
e Does calibration on the validation set help?

e \We present a benchmark for uncertainty. 30:5: %% i ; E%

e Quality of uncertainty consistently degrades with
iIncreasing dataset shift regardless of the

;ﬂ method.
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We tested a handful of scalable and well-known 1 2 3 4 :

. Skew intensity dataset does not usually translate to better
methods that attempt to account for uncertainty 12 . Soewssa . . .
due to incomplete data (e epistemic . —orite m—ropout T-1 Tl 1 calibration under dataset shift
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1 T ﬂ..a e Post-hoc calibration (on iid validation) with

Brier Score

e Vanilla: Baseline neural net model 2 *,# ﬁ?ﬁ L] S S temperature scaling leads to well-calibrated
e Temp-Scaling: Post-hoc  calibration by N - Lol d B uncertainty on i.i.d. test and small values of skew,

temperature scaling using an in-distribution : ; Skemitensny : : but is outperformed by methods that take

validation set . epistemic uncertainty into account as the skew
e Dropout: Monte-Carlo Dropout. 6:30. - P y

. I Vanilla B Dropout '

e Ensembles: Ensembles of M networks trained [ oz === tsv = cnsemoic increases.

. L . . [ LLDropout I Temp Scaling

independently from random initializations s 0201
e SVI: Stochastic Variational Bayesian Inference. . e Deep ensembles seem to perform the best
o LL: Approx. BayeS|an.|nference for parameters - .L;é; l é;_}; 1 across most metrics and be more robust to

of the last layer only (i.e. LL-SVI, LL-Dropout). 0.00- . : dataset shift

Skew |nten5|ty
3. Metrics 6. Results: Text-Classification
In addition to reporting model accuracies, we et BT S 04 00 A A D 4 A 00 1000 - D0 S 0 - M D A0 0 e All methods show increased
also use the following metrics to evaluate entropy on skewed / OOD text.
predictive distributions §§3 §'§1 fagy -1 §'§i §'§3 s ] §'§i R Y iree Y
.0 0.5 éh(;:rolsy 2.0 2.5 -0.5 0.0 OE t.Oply.S 2.0 2.5 0.0 0.5 E.Ot pf; 2.0 2.5 0.0 0.5 E.Ot 1p§/ 2.0 2.5 0.0 0.5 E.0t p.:;/ 2.0 2.5 0.0 O. E.Ot p_‘; 2.0 2.5
: : e (a, b) correspond to a 50/50 mix of

Expected Calibration Error (ECE) P P S ( ,) | ,p 9075

o Computed as the average gap between b=t ; : iIN-distribution and skewed text.

within-bucket accuracy and within-bucket
predicted probability for S buckets.

o Does not reflect accuracy (predicting class
frequencies gives perfect calibration).

of examples

e (c, d) correspond to a 50/50 mix of
in-distribution and fully-OOD text.

(a) Confidence vs Acc. (b) Confidence vs Count (c¢) Confidence vs Accuracy (d) Confidence vs Count

Negative Log-Likelihood (NLL)

o Proper scoring rule. /7. Results: Criteo Ad-Click Prediction

o Can overemphasize tail probabilities e S—— :

o Commonly used to evaluate the quality of W fmmall ! | e Ensembles perform the best, but Brier score
model uncertainty. LL-Dropout - '

degrades rapidly.
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Brier Score
o Also a proper scoring rule.
o Quadratic penalty is more tolerant of
low-probability errors than log

1 | 9 5 e Temp Scaling led to worse Brier scores under skew.
BS = Z [p(y‘xn: 9)_5(9_'972,)]

VIS 8. Additional Observations

We also plot accuracy-vs-confidence to
visualize the accuracy tradeoff when using
prediction confidence as an OOD score.

Brier Score

- e Both Dropout variants improve over Vanilla, and their
Brier scores see less deterioration as skew increases.

e SVIis promising on MNIST/CIFAR but difficult to use on larger datasets (e.g. ImageNet) and complex architectures
(e.g. LSTMs).
e Relative ordering of methods is mostly consistent (except for MNIST) across our experiments.

Some experiments evaluated predictions on fully e Deep ensembles seem to perform the best across most metrics and be more robust to dataset shift; relatively
OOD examples, for this, we compare small ensemble size (e.g. 5) may be sufficient.

distributions of predictive entropy. ArXiv Version: https://arxiv.org/abs/1906.02530
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