LIKELIHOOD RATIOS FOR OUT-OF-DISTRIBUTION DETECTION

Jie Ren*, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo, Joshua V. Dillon, Balaji Lakshminarayanan*

1. INTRODUCTION

3. LIKELIHOOD RATIOS FOR OOD DETECTION

- Discriminative models offer little performance guarantees on out-of-distribution (OOD) inputs, limiting the AI safety in real-world applications.
- Bacteria identification based on genomic sequences holds the promise of early detection of disease.
- ML classifiers perform poorly in real world, because real data contains 60-80% genomic sequences from unknown bacteria and other contaminants.
 We create a realistic benchmark for OOD detection on genomics data.
 We propose a Likelihood Ratio method for OOD detection, achieving SOTA on genomics data
- Assumption: An input x is composed of two components
 Background x_B: population level background statistics
 Semantic x_S: in-dist. specific features. See examples.

$$p(\mathbf{x}) = p(\mathbf{x}_B) \underbrace{p(\mathbf{x}_S)}_{\text{the focus}} \text{the focus}$$

• To focus on \mathbf{x}_{c} we propose (1) training a background model

Examples of Background vs Semantics:

- Images: background + objects
- *Text*: stop words + key words
- *Genomics*: GC background + motifs
- Speech: background noise + speaker

10 in-distribution, 60 OOD validation, 60 OOD test classes.

on perturbed inputs and (2) computing the likelihood ratio

$$LLR(\mathbf{x}) = \log \frac{p_{\theta}(\mathbf{x})}{p_{\theta_0}(\mathbf{x})} = \log \frac{p_{\theta}(\mathbf{x}_B) \ p_{\theta}(\mathbf{x}_S)}{p_{\theta_0}(\mathbf{x}_B) \ p_{\theta_0}(\mathbf{x}_S)} \approx \log \frac{p_{\theta}(\mathbf{x}_S)}{p_{\theta_0}(\mathbf{x}_S)}$$

assuming both models capture background equally well.

• LLR is a background contrastive score: the significance of the semantics compared with the background.

Algorithm

- Fit $p_{\theta}(\mathbf{x})$ using in-distribution data
- Fit $p_{\theta_0}(\mathbf{x})$ using perturbed input data and (optionally) model regularization^{*}.
- Compute the likelihood ratio.
- Predict OOD if likelihood ratio is small.

*mutation rate and L2 coefficient are tuned using an independent OOD dataset different from test OOD.

4. OOD DETECTION FOR IMAGES

- Investigate auto-regressive models: *which pixels contribute the most to the likelihood (ratio)?*
- Fashion-MNIST (in-dist.) vs. MNIST (OOD). PixelCNN++ model is trained on Fashion-MNIST.
- Likelihood is dominated by the background pixels $\Rightarrow p(Fashion-MNIST) < p(MNIST)$
- Likelihood ratio focuses on the semantic pixels ⇒ LLR(Fashion-MNIST) > LLR(MNIST)

Bacterial classes are discovered gradually over the years (not saturated yet).

In-distribution and OOD classes are interlaced in phylogeny

2. GENERATIVE MODELS CAN ASSIGN HIGHER LIKELIHOOD TO OOD INPUTS

• Generative models:

• do not require labeled data

• model the input distribution $p(\mathbf{x}_{\text{TRAIN}})$ and then evaluate the likelihood of new inputs.

 Higher likelihoods for OOD than in-dist. in
 Fashion-MNIST (in-dist.)
 vs. MNIST (OOD)
 [Nalisnick et al., 2018, Choi et al. 2019].

				5 2 4			
$\log p_{\theta}(x_d)$ 10	$g p_{\theta}(x_d) - \log p_{\theta_0}(x_d)$	(x_d) log $p_{\theta}(x_d)$	$p_{\theta}(p) = \log p_{\theta}(p)$	$(x_d) - \log p_d$	$_{ heta_0}(x_d)$ -	-2000 –1000 0 1000 200 Log likelihood-r	o 3000 4000 atio
Fashion-MNIST MNIST							
*(sorted by likelihoo	od from high to low)						
					M	ethod	AUROC
$\sim \sim \sim \approx$					Lik	elihood	0.115
$\sim \sim \sim$			ST -	8	Likelił	nood Ratio	0.997
				÷	Classifier	r-based p(y x)	0.579
					Classifier-	based Entropy	0.588
$\sim \sim \sim$				s.IT	Classifier	r-based ODIN	0.620
Images with highest	(high portion of	Images with hig	hest (prototyp	oical icons)	Classifie	r Ensemble 5	0.832
background) and low	est likelihood	& lowest likeliho	ood ratio (rare	patterns)	Classi Mahalan	fier-based obis Distance	0.986

5. OOD DETECTION FOR GENOMICS

- LSTM model is trained using sequences from in-distribution classes
- Likelihood Ratio significantly improves OOD Detection
- Effect of background GC-content is corrected
- OOD detection correlates with its distance to in-distribution*

l ikelihood Ratio	0 755
Likelihood	0.630
Method	AUROC

Summary

1.0

GC content

- Create a **realistic benchmark dataset** for OOD detection in genomics
- Show that the likelihood from deep generative models can be **confounded by background statistics**
- Propose a likelihood ratio method for OOD detection, outperforming the raw likelihood
- Our method achieves state-of-the-art performance on genomic dataset.

Check the ArXiv Version for details

Contact: jjren@google.com, balajiln@google.com