Detecting out-of-distribution inputs using deep generative models: Pitfalls and promises

Balaji Lakshminarayanan balajiln@

Joint work with colleagues at DeepMind and Google

• Cost-sensitive decision making (e.g. healthcare, self-driving cars, robotics)

¹Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7].

- Cost-sensitive decision making (e.g. healthcare, self-driving cars, robotics)
- · Dealing with train-test skew in production systems

¹Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7].

- Cost-sensitive decision making (e.g. healthcare, self-driving cars, robotics)
- · Dealing with train-test skew in production systems
- Open-set recognition

¹Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7].

- Cost-sensitive decision making (e.g. healthcare, self-driving cars, robotics)
- · Dealing with train-test skew in production systems
- Open-set recognition
- Active learning for efficient data collection

¹Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7].

- Cost-sensitive decision making (e.g. healthcare, self-driving cars, robotics)
- · Dealing with train-test skew in production systems
- Open-set recognition
- Active learning for efficient data collection
- · Reinforcement learning: (Safe) Exploration

¹Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7].

- Cost-sensitive decision making (e.g. healthcare, self-driving cars, robotics)
- · Dealing with train-test skew in production systems
- Open-set recognition
- Active learning for efficient data collection
- · Reinforcement learning: (Safe) Exploration
- ... and many more!

¹Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7].

Probabilistic Machine Learning

"Generative" Model

• $p(y|\mathbf{x})$ is trained only on $x \sim p_{TRAIN}(x)$

- $p(y|\mathbf{x})$ is trained only on $x \sim p_{TRAIN}(x)$
- p(y|x) is typically accurate on i.i.d test inputs, but can make overconfident errors when asked to predict on out-of-distribution (OOD) inputs

- $p(y|\mathbf{x})$ is trained only on $x \sim p_{TRAIN}(x)$
- p(y|x) is typically accurate on i.i.d test inputs, but can make overconfident errors when asked to predict on out-of-distribution (OOD) inputs
- Use density model $p(\mathbf{x})$ to decide when to trust $p(y|\mathbf{x})$ [1]

Novelty Detection & Neural Network Validation

Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick *1 Akihiro Matsukawa *1 Yee Whye Teh 1 Dilan Gorur 1 Balaji Lakshminarayanan 1

 Idea: use normalizing flows to compute exact density p(x) and p(y|x) in a single feed-forward pass

Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick *1 Akihiro Matsukawa *1 Yee Whye Teh 1 Dilan Gorur 1 Balaji Lakshminarayanan 1

- Idea: use normalizing flows to compute exact density p(x) and p(y|x) in a single feed-forward pass
- Works well in some cases

Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick *1 Akihiro Matsukawa *1 Yee Whye Teh 1 Dilan Gorur 1 Balaji Lakshminarayanan 1

- Idea: use normalizing flows to compute exact density p(x) and p(y|x) in a single feed-forward pass
- Works well in some cases
- The failure modes were very interesting, so we decided to investigate this in detail ...

Published as a conference paper at ICLR 2019

DO DEEP GENERATIVE MODELS KNOW WHAT THEY DON'T KNOW?

Eric Nalisnick # Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan* DeepMind

Generative models for CIFAR

Deep generative models where density $p(\mathbf{x})$ can be computed:

- Flow-based models: GLOW [2]
- Auto-regressive models: PixelCNNs [9]
- · Variational Auto-Encoders (lower bound)

Training on CIFAR and Testing on SVHN (OOD)

Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images

	Bits Per Dimension (NLL / # dims / log 2)
CIFAR10-Train CIFAR10-Test	3.386 3.464
CIFARIO-Iest	5.404

Training a Flow-Based Model on CIFAR-10

-

	(NLL / # dims / log 2)
CIFAR10-Train	3.386
CIFAR10-Test	3.464
SVHN-Test	2.389

(Lower is Better)

Training a Flow-Based Model on CIFAR-10

Model assigns high likelihood to constant inputs too

							· · ·		
- I	X	-	X	*	-	d,	-4-	-	
			B	-		-		-	1
Se la	5	4		1	4	1	1	A HIL	
			2	3	Č.	2	4	the second	
1	40	\mathbf{x}	R	1	8	Y	1		
-		11.00	6 A	and the second	100	and the second second	1 - 1	1000	

CIFAR-10 Training Images

	(NLL / # dims / log 2)
CIFAR10-Train	3.386
CIFAR10-Test	3.464
SVHN-Test	2.389

Bits Per Dimension

(Lower is Better)

Data Set	Avg. Bits Per Dimension	
Glow Trained on CIFAR-10		
Random	15.773	
Constant (128)	0.589	

Phenomenon holds for VAEs and PixelCNN too

- (b) VAE with RNVP as encoder
- (c) VAE conv-categorical likelihood

CIFAR10-TRAIN

CIFAR10-TEST

SVHN-TEST

The phenomenon is asymmetric w.r.t. datasets

CIFAR-10 vs SVHN

SVHN vs CIFAR-10

Additional OOD dataset pairs

CelebA vs SVHN

ImageNet vs CIFAR-10 vs SVHN

Phenomenon holds throughout training

Ensembling does not fix the problem either

Ensemble of 10 Glows

Explaining the failure mode for Flow-based models

Define *Z* by a transformation of another variable *X*:

$$Z = f(X)$$

Change of Variables Formula ($X \rightarrow Z$):

$$p_z(f(X)) \left| \frac{df(X)}{dX} \right| = p(X)$$

Define *Z* by a transformation of another variable *X*:

Z = f(X)

f(**x**) must be a bijection (invertible 1:1 mapping)

Change of Variables Formula ($X \rightarrow Z$):

$$p_z(f(X)) \left| \frac{df(X)}{dX} \right| = p(X)$$

Define *Z* by a transformation of another variable *X*:

Z = f(X)

f(**x**) must be a bijection (invertible 1:1 mapping)

Change of Variables Formula (X \rightarrow Z):

$$p_z(f(X)) \left| \frac{df(X)}{dX} \right| = p(X)$$

1

Use simple base distribution p_z such as Gaussian

Use architecture such that determinant of Jacobian |df/dx| is easy to compute

When would out-of-distribution *q* will have higher log-likelihood than *p**?

Mathematical characterization:

$$0 < \mathbb{E}_q[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^*}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$

Non-Training Distribution Training Distribution

Explaining the observations using flow models

Mathematical characterization:

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{\underline{p^{*}}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$

Non-Training Distribution Training Distribution

Second Moment of Training Distribution

$$\approx \frac{1}{2} \operatorname{Tr} \left\{ \left[\nabla_{\boldsymbol{x}_{0}}^{2} \log p_{z}(f(\boldsymbol{x}_{0}; \boldsymbol{\phi})) + \nabla_{\boldsymbol{x}_{0}}^{2} \log \left| \frac{\partial \boldsymbol{f}_{\boldsymbol{\phi}}}{\partial \boldsymbol{x}_{0}} \right| \right] (\underline{\boldsymbol{\Sigma}_{q}} - \overline{\boldsymbol{\Sigma}_{p^{*}}}) \right\}$$
Change-of-Variable
Terms
Second Moment
of Non-Training
Distribution

Explaining the observations using Constant Volume GLOW (CV GLOW)

Mathematical characterization:

$$0 < \mathbb{E}_q[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^*}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$

Plugging in the CV-Glow transform:

$$\operatorname{Tr}\left\{\left[\nabla_{\boldsymbol{x}_{0}}^{2}\log p(\boldsymbol{x}_{0};\boldsymbol{\theta})\right](\boldsymbol{\Sigma}_{q}-\boldsymbol{\Sigma}_{p^{*}})\right\} \\ = \frac{\partial^{2}}{\partial z^{2}}\log p(\boldsymbol{z};\boldsymbol{\psi}) \sum_{c=1}^{C} \left(\prod_{k=1}^{K}\sum_{j=1}^{C}u_{k,c,j}\right) \\ \stackrel{\mathsf{Non-negative}}{\underset{(e.g. Gaussian)}{\operatorname{Second Moment}}} \sum_{k=1}^{\operatorname{Second Moment}} \sum_{k=1}^{\operatorname{Second Moment}} \sum_{k=1}^{\mathcal{Second Mo$$

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^{*}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$
Non-Training
Distribution
$$\approx \underbrace{\partial^{2}}_{\partial \mathbf{x}} \underbrace{\log p(\boldsymbol{x}; \boldsymbol{\theta})}_{c=1} \underbrace{\sum_{c=1}^{C} \underbrace{\sum_{k=j=1}^{C} \mu_{k}}_{k=j=1} \underbrace{\log p(\boldsymbol{x}; \boldsymbol{\theta})}_{h,w} \underbrace{\sum_{h,w} (\sigma^{2}_{q,h,w,c} - \sigma^{2}_{p^{*},h,w,c})}_{Second Moment of Non-Training Distribution}$$

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^{*}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$
Non-Training
Distribution
$$\approx \frac{\partial^{2}}{\partial q} \log p(\boldsymbol{x}; \boldsymbol{\theta}) \sum_{c=1}^{C} \left[\sum_{k=j=1}^{K} \sum_{j=1}^{C} \sum_{k=j=1}^{M} \sum_{k=$$

CIFAR-10 vs SVHN (plugging in empirical moments)

Asymmetry Uniform Inputs

Ensembling

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^{*}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$
Non-Training
Distribution
$$\approx \underbrace{\partial^{2}_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{y})}_{\mathcal{O}} \sum_{c=1}^{C} \underbrace{\int_{c=1}^{K} \mathcal{O}_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{y})}_{\mathcal{O}} \sum_{b,w}^{C} (\sigma_{q,h,w,c}^{2} - \sigma_{p^{*},h,w,c}^{2})$$

$$\sum_{b,w}^{C} (\sigma_{q,h,w,c}^{2} - \sigma_{p^{*},h,w,c}^{2})$$

$$\underbrace{\int_{c=1}^{K} \mathcal{O}_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{y}, \boldsymbol{y})}_{\mathcal{O}} \sum_{b,w}^{C} (\sigma_{p,h,w,c}^{2} - \sigma_{p^{*},h,w,c}^{2})$$

$$\underbrace{\int_{c=1}^{K} \mathcal{O}_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{y}, \boldsymbol{y})}_{\mathcal{O}_{\boldsymbol{\theta}}} \sum_{b,w}^{C} (\sigma_{p,h,w,c}^{2} - \sigma_{p^{*},h,w,c}^{2})$$

$$\underbrace{\int_{c=1}^{K} \mathcal{O}_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{y}, \boldsymbol{y}, \boldsymbol{y})}_{\mathcal{O}_{\boldsymbol{\theta}}} \sum_{b,w}^{C} (\sigma_{p,h,w,c}^{2} - \sigma_{p^{*},h,w,c}^{2})$$

$$\underbrace{\int_{c=1}^{K} \mathcal{O}_{\boldsymbol{\theta}}(\boldsymbol{y}, \boldsymbol{y}, \boldsymbol{y})}_{\mathcal{O}_{\boldsymbol{\theta}}} \sum_{b,w}^{C} (\sigma_{p,h,w,c}^{2} - \sigma_{p^{*},h,w,c}^{2})$$

Ensembling

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^{*}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$
Non-Training
Distribution
$$\approx \underbrace{\partial^{2}_{\boldsymbol{\theta}}(\log p(\boldsymbol{x}; \boldsymbol{\theta}))}_{C} \sum_{c=1}^{C} \underbrace{\prod_{k=1}^{K} \prod_{j=1}^{C} \prod_{k=1}^{K} \prod_{j=1}^{K} \prod_{j=$$

Asymmetry (due to sub. being non-commutative)

```
Uniform Inputs
```

Ensembling

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^{*}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$
Non-Training
Distribution
$$\approx \overbrace{\partial^{2}}^{C} \underbrace{| \mathbf{v} \cdot \mathbf{v} \rangle}_{C=1} \underbrace{| \mathbf{v} \cdot \mathbf{v} \rangle}_{C=1} \underbrace{| \mathbf{v} \cdot \mathbf{v} \rangle}_{L=1} \underbrace{| \mathbf{v} \cdot \mathbf{v$$

$$0 < \mathbb{E}_{q}[\log p(\boldsymbol{x}; \boldsymbol{\theta})] - \mathbb{E}_{p^{*}}[\log p(\boldsymbol{x}; \boldsymbol{\theta})]$$
Non-Training
Distribution
$$\approx \underbrace{\partial^{2}_{\boldsymbol{\theta}}(\operatorname{log} n(\boldsymbol{x}; \boldsymbol{\theta}))}_{\mathcal{C}_{c=1}^{C}} \underbrace{\int_{\boldsymbol{\xi}_{c=1}^{C}}^{\mathcal{C}} \int_{\boldsymbol{\xi}_{c=1}^{C}}^{\mathcal{C}} \int_{\boldsymbol{\xi}_{c=1}^{C}}^{\mathcal{C}} \int_{\boldsymbol{\xi}_{c=1}^{C}}^{\mathcal{C}} \underbrace{\int_{\boldsymbol{\xi}_{c=1}^{C}}^{\mathcal{C}} \int_{\boldsymbol{\xi}_{c=1}^{C}}^{\mathcal{C}} \int_{\boldsymbol{\xi}_{$$

Hypothesis: If the second-order statistics do indeed dominate, we should be able to control the likelihoods by graying the images...

Follow-up Work

Detecting Out-of-Distribution Inputs to Deep Generative Models Using a Test for Typicality

Eric Nalisnick; Akihiro Matsukawa, Yee Whye Teh, Balaji Lakshminarayanan* DeepMind {enalisnick, amatsukawa, ywteh, balajiln}@google.com

Motivating question: why don't we ever see samples from the OOD set?

Samples from Generative Model

Typical sets versus Mode

Mode can be very atypical of the distribution in high dimensions

Typical sets versus Mode

- Mode can be very atypical of the distribution in high dimensions
- High-dimensional Gaussian:
 - Mode is at μ
 - Typical samples lie near the shell

Figure: High dimensional Gaussian

Could similar phenomenon happen with deep generative models too?

Definition of typical sets

Definition 2.1. ϵ -**Typical Set** [11] For a distribution $p(\mathbf{x})$ with support $\mathbf{x} \in \mathcal{X}$, the ϵ -typical set $\mathcal{A}_{\epsilon}^{N}[p(\mathbf{x})] \in \mathcal{X}^{N}$ is comprised of all N-length sequences that satisfy

$$\mathbb{H}[p(\mathbf{x})] - \epsilon \le \frac{-1}{N} \sum_{n=1}^{N} \log p(\boldsymbol{x}_n) \le \mathbb{H}[p(\mathbf{x})] + \epsilon$$

where $\mathbb{H}[p(\mathbf{x})] = \int_{\mathcal{X}} p(\mathbf{x})[-\log p(\mathbf{x})] d\mathbf{x}$ and $\epsilon \in \mathbb{R}^+$ is a small constant.

Definition of typical sets

Definition 2.1. ϵ -**Typical Set** [11] For a distribution $p(\mathbf{x})$ with support $\mathbf{x} \in \mathcal{X}$, the ϵ -typical set $\mathcal{A}_{\epsilon}^{N}[p(\mathbf{x})] \in \mathcal{X}^{N}$ is comprised of all N-length sequences that satisfy

$$\mathbb{H}[p(\mathbf{x})] - \epsilon \le \frac{-1}{N} \sum_{n=1}^{N} \log p(\boldsymbol{x}_n) \le \mathbb{H}[p(\mathbf{x})] + \epsilon$$

where $\mathbb{H}[p(\mathbf{x})] = \int_{\mathcal{X}} p(\mathbf{x})[-\log p(\mathbf{x})] d\mathbf{x}$ and $\epsilon \in \mathbb{R}^+$ is a small constant.

Testing for typicality

- If a batch x₁,..., x_M is in the typical set, then the average negative log likelihood should be close to the entropy.
- · Can use tools from statistical hypothesis testing literature

Testing for Typicality improves OOD detection

Figure: Effect of batch size on AUC of OOD detection

Better OOD detection for genomic sequences

Likelihood Ratios for Out-of-Distribution Detection

Jie Ren^{*†} Google Research jjren@google.com Peter J. Liu Google Research peterjliu@google.com Emily Fertig[†] Google Research emilyaf@google.com

Jasper Snoek Google Research jsnoek@google.com Ryan Poplin Google Inc. rpoplin@google.com Mark A. Depristo Google Inc. mdepristo@google.com

Joshua V. Dillon Google Research jvdillon@google.com Balaji Lakshminarayanan* DeepMind balajiln@google.com

Explaining the failure mode for PixelCNN

- PixelCNN++ model trained on FashionMNIST
- Heat-map showing per-pixel contributions on Fashion-MNIST (in-dist) and MNIST (OOD)
- Background pixels dominate the likelihood

Explaining the failure mode for PixelCNN

- PixelCNN++ model trained on FashionMNIST
- Heat-map showing per-pixel contributions on Fashion-MNIST (in-dist) and MNIST (OOD)
- **Background pixels dominate the likelihood**. Explains why MNIST is assigned higher likelihood.

Likelihood Ratio to distinguish Background vs Semantics

- Input *x* consists of *background x*_B and semantic component *x*_S. Examples:
 - Images: background versus objects
 - Text: stop words versus key words
 - Genomics: GC background versus motifs
 - Speech: background noise versus speaker

$$p(\mathbf{x}) = \overbrace{p(\mathbf{x}_B)}^{\text{p}(\mathbf{x}_S)} \overbrace{\mathbf{x}_S}^{\text{can be dominant}} \underset{\text{the focus}}{\text{the focus}}$$

Likelihood Ratio to distinguish Background vs Semantics

- Input *x* consists of *background x*_B and semantic component *x*_S. Examples:
 - Images: background versus objects
 - Text: stop words versus key words
 - Genomics: GC background versus motifs
 - Speech: background noise versus speaker

$$p(\mathbf{x}) = \overbrace{p(\mathbf{x}_B)}^{\text{p}(\mathbf{x}_S)} \overbrace{\mathbf{x}_S}^{\text{can be dominant}} \underset{\text{the focus}}{\text{the focus}}$$

• Training a background model on perturbed inputs. Compute the likelihood ratio

$$\mathsf{LLR}(\mathbf{x}) = \log \frac{p_{\theta}(\mathbf{x})}{p_{\theta_0}(\mathbf{x})} = \log \frac{p_{\theta}(\mathbf{x}_B) \ p_{\theta}(\mathbf{x}_S)}{p_{\theta_0}(\mathbf{x}_B) \ p_{\theta_0}(\mathbf{x}_S)} \approx \log \frac{p_{\theta}(\mathbf{x}_S)}{p_{\theta_0}(\mathbf{x}_S)}$$

Likelihood ratio improves OOD detection for PixelCNN

- PixelCNN++ model trained on FashionMNIST
- Heat-map showing per-pixel contributions on Fashion-MNIST (in-dist) and MNIST (OOD)
- Likelihood Ratio (using background model) focuses on the semantic pixels and significantly outperforms likelihood on OOD detection .

Likelihood ratio significantly improves OOD detection on genomics data too

Method	AUROC
Likelihood	0.630
Likelihood Ratio	0.755
Classifier-based p(y x)	0.622
Classifier-based Entropy	0.622
Classifier-based ODIN	0.645
Classifier Ensemble 5	0.673
Classifier-based Mahalanobis Distance	0.496

- Realistic benchmark + open-source code
- https://github.com/google-research/google-research/tree/ master/genomics_ood

Take home messages

- Be cautious when using density estimates from deep generative models as proxy for "similarity" to training data
 - Can assign higher density to OOD inputs than training data!
 - Novelty / Anomaly detection

Take home messages

- Be cautious when using density estimates from deep generative models as proxy for "similarity" to training data
 - Can assign higher density to OOD inputs than training data!
 - Novelty / Anomaly detection
- Explaining the observed failure modes:
 - Flow-based models: Can be explained through inductive bias and the relative variances of the input distributions
 - Autoregressive models: Can be explained through background effect

Take home messages

- Be cautious when using density estimates from deep generative models as proxy for "similarity" to training data
 - Can assign higher density to OOD inputs than training data!
 - Novelty / Anomaly detection
- Explaining the observed failure modes:
 - Flow-based models: Can be explained through inductive bias and the relative variances of the input distributions
 - Autoregressive models: Can be explained through background effect
- Solutions:
 - Likelihood ratio using background model
 - Typicality test

Thanks!

- Aki Matsukawa
- Dilan Gorur
- Emily Fertig
- Eric Nalisnick
- Jasper Snoek
- Jie Ren
- Josh Dillon
- Mark DePristo
- Peter Liu
- Ryan Poplin
- · Yee Whye Teh

Papers available on my webpage (link)

Out-of-distribution robustness of deep generative models

- Do deep generative models know what they don't know? [5]
- · Likelihood ratios for out-of-distribution detection [8]
- Detecting out-of-distribution inputs to deep generative models using a test for typicality [4]

Predictive uncertainty estimation in deep learning

- Hybrid models with deep and invertible features [6]
- Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [7]
- Simple and scalable predictive uncertainty estimation using deep ensembles [3]

- [1] Christopher M Bishop. Novelty Detection and Neural Network Validation. 1994.
- [2] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. In *NeurIPS*, 2018.
- [3] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. In *NeurIPS*, 2017.
- [4] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting out-of-distribution inputs to deep generative models using a test for typicality. arXiv preprint arXiv:1906.02994, 2019.
- [5] Eric Nalisnick, Akihiro Matsukawa, YeeWhye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do Deep Generative Models Know What They Don't Know? In *ICLR*, 2019.
- [6] Eric Nalisnick, Akihiro Matsukawa, YeeWhye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Hybrid models with deep and invertible features. In ICML, 2019.
- [7] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift. In *NeurIPS*, 2019.
- [8] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A DePristo, Joshua V Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In *NeurIPS*, 2019.
- [9] Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image generation with pixel CNN decoders. In *NeurIPS*, 2016.