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know what they don’t know?"

- Cost-sensitive decision making (e.g. healthcare,
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Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].
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Goal: How do we build neural networks that
know what they don’t know?"

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

* Dealing with train-test skew in production systems
* Open-set recognition

+ Active learning for efficient data collection

- Reinforcement learning: (Safe) Exploration

* ... and many more!

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].



Probabilistic Machine Learning




Discriminative vs Generative models

“Discriminative” Model “Generative” Model



Discriminative vs Generative models

vy oo\ A i
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is trained only on x ~ prran(X)



Discriminative vs Generative models

Y NS I
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is trained only on x ~ prran(X)

* p(y|x) is typically accurate on i.i.d test inputs, but can make
overconfident errors when asked to predict on
out-of-distribution (O0D) inputs



Discriminative vs Generative models
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“Discriminative” Model “Generative” Model

* p(y|x) is trained only on x ~ prran(X)

* p(y|x) is typically accurate on i.i.d test inputs, but can make
overconfident errors when asked to predict on
out-of-distribution (O0D) inputs

+ Use density model p(x) to decide when to trust p(y|x) [1]
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Novelty Detection & Neural Network Validation

Inputs Unlike Training Data

if p(x™; @) <7,

then reject «*

Use p(X) modél to reject
inputs with density below
some threshold [Bishop, 1994].



Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features
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+ ldea: use normalizing flows to compute exact density p(x)
and p(y|x) in a single feed-forward pass
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Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick ! Akihiro M wa"! Yee Whye Teh' Dilan Gorur' Balaji Lakshminarayanan'

+ ldea: use normalizing flows to compute exact density p(x)
and p(y|x) in a single feed-forward pass

+ Works well in some cases

* The failure modes were very interesting, so we decided to
investigate this in detail ...



Published as a conference paper at ICLR 2019

DO DEEP GENERATIVE MODELS KNOW
WHAT THEY DON’T KNOW?

Eric Nalisnick*{ Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan*
DeepMind



Generative models for CIFAR

CIFAR-10 Training Images
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Deep generative models where density p(x) can be computed:
* Flow-based models: GLOW [2]
- Auto-regressive models: PixelCNNs [9]
* Variational Auto-Encoders (lower bound)



Training on CIFAR and Testing on SVHN (OOD)

Training: CIFAR-10  Testing: SVHN

GENERATIVE
MODEL

p(xCIFAR-IO) § p(XSVHN)



Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images
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Training a Flow-Based Model on CIFAR-10

SVHN Test Images
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Training a Flow-Based Model on CIFAR-10

SVHN Test Images Bits( Per Dimen?ion
NLL / # dims / log 2)
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Model assigns high likelihood to constant

CIFAR-10 Training Images

=S - BBl
ERECENeE=S
Tl VES yEE
EEaEEaEEs P
T Bl
HE<s DR
EEESEULaNE
ANEEOMEXER
=S T PP
AR R ES RS

inputs too

Bits Per Dimension
(NLL/ # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR-10

Random 15.773
Constant (128) 0.589
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Phenomenon holds throughout training
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Ensembling does not fix the problem either
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Explaining the failure mode for
Flow-based models
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Flows: one slide summary

Define Z by a transformation of
another variable X:

Z = f(X)

Change of Variables Formula (X = 2):

w0y |2 = o
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Flows: one slide summary

Define Z by a transformation of
another variable X:

7= f(x)

f(x) must be a bijection
(invertible 1:1 mapping)

x=fY%z) z=£f(x)

Change of Variables Formula (X = Z):

(0 | ] =i
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Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = 2):
another variable X:
Z=f(X df (X
) p (00 [ L2 =50

f(x) must be a bijection
(invertible 1:1 mapping) /

Use simple base
distribution p_such
as Gaussian

x=f%z) z=£(x)

!

Use architecture such that
determinant of Jacobian
|df/dx| is easy to compute
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Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = Z):

another variable X:

Z = f(X)

df (X)

(0 [ L2 =50
f(x) must be a bijection
(invertible 1:1 mapping) / T
Use simple base Use architecture such that
distribution p, such determinant of Jacobian

x=1fYz) z=1£(x)

as Gaussian / |df/dx| is easy to compute

Compose simple f's to build a powerful model f = f of o...of
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When would out-of-distribution g will have
higher log-likelihood than p*?

Mathematical characterization:

0 < Eqflog p(; )] — Ep- [log p(a; 0)]

Non-Training Training
Distribution Distribution
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Explaining the observations using flow models

Mathematical characterization:

0 < Eq[log p(; 0)] — Ep-[log p(x; 6)]

Non-Training Training
Distribution Distribution Second Moment
of Training
8f Distribution
1 —
~ 1] [V own. (1o ) + 92, g | 322 | 2, 50}

4 second Moment
of Non-Training
Distribution

Change-of-Variable
Terms
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Explaining the observations using
Constant Volume GLOW (CV GLOW)

Mathematical characterization:

0 < Eq[logp(; 0)] — Ep- [log p(; 0)]

Non-Training Training
Distribution Distribution
Second Moment
of Training
Distribution
1 3 —
2
Y — . ' —
~ 2 Tr vmo Ingz(f(:z:O, ¢)) + V5, sl o, (Eq EP*)
C () —
4 { second Moment

of Non-Training
Distribution

Change-of-Variable
Terms
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Explaining the observations using CV-GLOW

Plugging in the CV-Glow transform:

Tr { [Vio log p($0, 0)] (Eq — Ep* )} Second Moment Second Moment
of Non-Training of Training
c Distribution Distribution

8 —
a 9.2 logp z; ’(p Z quk (%] Z(Ug,h,w,c - 2*,h,w,c)

c=1 \k=1j=1 h,w

< 0 for all log-
concave densities Non-negative
(e.g. Gaussian) due to square
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Explaining the observations using CV-GLOW

0 < Eq[logp(; 0)] — Ep- [log p(; 6)]

- . Second

Non-Training Training Moment of

Distribution Distribution Training
Distribution

Z( q,hwc p hwc)

Second Moment of
Non-Training
Distribution
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Explaining the observations using CV-GLOW

0 < Eq[logp(a; 0)] — Eyp- [log p(a; )]

- = Second
Non-Training Training Moment of
Distribution Distribution Training
2 2
Z (aq,h J,(:di p').w,c)
h,u

Non-Training
Distribution

() CIFAR-10 vs SVHN (plugging in empirical moments)
@ Asymmetry

D Uniform Inputs

D Ensembling

D Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[log p(x; 8)] — Eyp-[log p(a; 0))

- . Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution

2 2
Z(Uq,h,w,c ~ Opt hwie)
h,w

Second Moment of
Non-Training
Distribution

() CIFAR-10 vs SVHN (plugging in empirical moments)
[:] Asymmetry (due to sub. being non-commutative)
D Uniform Inputs

[:] Ensembling

D Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[logp(z; )] — Ep- [log p(a; 0)]

. L Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution
c —
~ ZM_ g’,h,w,c)
c=1 h,w
Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
[:] Uniform Inputs

[:] Ensembling

D Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[log p(; 0)] — Ep- [log p(a; 0)]

- . Second
Non-Training Training Moment of
Distribution Distribution Training

Non-Training
Distribution

D CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
C] Uniform Inputs (non-training 2nd moment is zero)
D Ensembling

[:] Early Stopping
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Explaining the observations using CV-GLOW

0 < Eqllog p(a; 6)] ~ Ey- log p(a; 0)]

- L Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution

Z(Uq,hwc " hwc)

Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
D Uniform Inputs (non-training 2nd moment is zero)
[:] Ensembling

(sign doesn’t depend on model param. values)
O Early Stopping }
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Explaining the observations using CV-GLOW

0 < Eq[logp(z; 0)] — Ep- [log p(x; 0)]

- L Second
Non-Training Training Moment of

Distribution Distribution Training
Distribution

Z(ag,h,w,c - 012" .h.,w,c)

hyaw

Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
C] Uniform Inputs (non-training 2nd moment is zero)

[:] Ensembling
(sign doesn't depend on model param. values)
(] Early Stopping

34



Explaining the observations using CV-GLOW

0 < Eq[logp(x; 0)] — Ep-[log p(x; 0)]

- — Second
Nqn-T_ralr?lng .Tra.mln.g Moment of
Distribution Distribution Training

Distribution

02 < 2 2
R 54 lqg_n(z!) Z Z(aq.h,w,v = O hwe)
lc=1 h,w
Second Moment of

Non-Training
Distribution

Hypothesis: If the second-order pmm v m

statistics do indeed dominate, we - -

should be able to control the
likelihoods by graying the images...
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Explaining the observations using CV-GLOW

0 < Eqllogp(; 0)] — Ey- [log p(x; 0)]

- - Second
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Follow-up Work
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Detecting Out-of-Distribution Inputs to Deep
Generative Models Using a Test for Typicality

Eric Nalisnick; Akihiro Matsukawa, Yee Whye Teh, Balaji Lakshminarayanan®
DeepMind
{enalisnick, amatsukawa, ywteh, balajiln}@google.com
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Motivating question: why don't we ever see

samples from the OOD set?

Samples from
Generative Model

MNIST:
Higher Likelihood

FashionMNIST:

Training Set
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Typical sets versus Mode

+ Mode can be very atypical of the distribution in high
dimensions

40



Typical sets versus Mode

+ Mode can be very atypical of the distribution in high
dimensions
* High-dimensional Gaussian:
- Modeisat u
— Typical samples lie near the shell

PROBABILITY
DENSITY

Highest
Density

TYPICAL SET PROBABILITY

DENSITY

Samples VOLUME

Olod'/*) DisTANCE FROM MODE Distance From Mope

(a) Gaussian Example (b) Mlustration (c) Simulation

Figure: High dimensional Gaussian
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Could similar phenomenon happen with
deep generative models too?

High Density HIGH MASS High Probability

(Samples)
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Definition of typical sets

Definition 2.1. e-Typical Set [11]

For a distribution p(x) with support x € X, the e-typical set

AN[p(x)] € XN is comprised of all N-length sequences that satisfy

N
Blp(d] - € < 7+ > loga(en) < Hp(x)] +¢

where Hp(x)] = [, p(x)[-log p(x

n=1

x)|dx and € € R* is a small constant.
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Definition of typical sets

Definition 2.1. e-Typical Set [11] For a distribution p(x) with support x € X, the e-typical set
AN[p(x)] € XN is comprised of all N-length sequences that satisfy

N
Blp(d] - € < 7+ > loga(en) < Hp(x)] +¢

n=1

where H[p(x)] = [, p(x)[-log p(x)]dx and ¢ € R is a small constant.

Testing for typicality

* If a batch x4, ..., Xy is in the typical set, then the average
negative log likelihood should be close to the entropy.

+ Can use tools from statistical hypothesis testing literature
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Testing for Typicality improves OOD detection

== ID: SVHN-TEST.

= 00D: CIFARIO-TEST -

= ID: SVHN-TEST = ID: SVHN-TEST
== 00D: CIFAR100-TEST -

-

= 00D: ImageNet-TEST -

Fraction of Batches Classified as 00D

Batch Size (M)

(a) SVHN Train, CIFARI0 Test

1 = ID: CIFARIOTEST
1 == 0OD: SVHN-TEST -

ee—

g
8
3
3

Fraction of Batches Cla:

mBa(‘:h 5;& (?:10:
(d) CIFAR10 Train, SVHN Test
.

8.

== ID: ImageNet-TEST
== 00D: SVHN-TEST

Fraction of Batches Classified as 00D
Fraction of Batches Classified as 00D

Batch Size (M)

(b) SVHN Train, CIFAR100 Test  (c) SVHN Train, ImageNet Test

Batch Size (M)

@= ID: CIFAR10-TEST
@= 0OD: ImageNet-TEST -

= ID: CIFAR10-TEST
@= 0OD: CIFAR100-TEST -

e

Fraction of Batches Classified as 00D

Fraction of Batches Cla:

Batch Size (M) Batch Size (M)

(e) CIFARIO0 Train, CIFAR100 Test (f) CIFAR10 Train, ImageNet Test

: ImageNet-TEST
00D: CIFAR100-TEST -

1D: ImageNet-TEST.
famm 00D: CIFARIO-TEST -

Batch Size (M)

(g) ImageNet Train, SVHN Test

Fraction of Batches Classified as 00D

Batch Size (M)

(h) ImageNet Train, CIFARIO Test (i) ImageNet Train, CIFAR100 Test

Batch Size (M)

Figure: Effect of batch size on AUC of OOD detection
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Better OOD detection for genomic sequences

Likelihood Ratios for Out-of-Distribution Detection

Jie Ren* ' Peter J. Liu Emily Fertig'
Google Research Google Research Google Research
jjren@google.com peterjliu@google.com emilyaf@google.com
Jasper Snoek Ryan Poplin Mark A. Depristo
Google Research Google Inc. Google Inc.
jsnoek@google.com rpoplin@google.com mdepristo@google.com
Joshua V. Dillon Balaji Lakshminarayanan*
Google Research DeepMind
jvdillon@google.com balajiln@google.com
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Explaining the failure mode for PixelCNN

+ PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

+ Background pixels dominate the likelihood
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Explaining the failure mode for PixelCNN

+ PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

+ Background pixels dominate the likelihood. Explains why
MNIST is assigned higher likelihood.

(W) (78] 7 :
«({ 0 (7]<lr3 :
AAAA ~03 :
EDRE 2572 :

log py(q)
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Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker

can be dominant
the focus

p(x) =|pxp)|p(xs)
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Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker

can be dominant
the focus

p(x) =|pxp)|p(xs)

* Training a background model on perturbed inputs.
Compute the likelihood ratio

po(x) — 1o ﬁ(XB) po(xs) ~1lo po(xs)

LLR(X) = ].Og De, (X) B Ds, (XB) De, (XS) Do, (XS)
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Likelihood ratio improves OOD detection for
PixelCNN

* PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

* Likelihood Ratio (using background model) focuses on
the semantic pixels and significantly outperforms
likelihood on OOD detection .
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log pp(z4) log po(xq) — log py,(4)

w
ReslENs

48



Likelihood ratio significantly improves OOD
detection on genomics data too

Method AUROC
Likelihood 0.630
Likelihood Ratio 0.755

Classifier-based p(ylx) 0.622

Classifier-based Entropy 0.622

Classifier-based ODIN 0.645

Classifier Ensemble 5 0.673

Classifier-based 0.496
Mahalanobis Distance

+ Realistic benchmark + open-source code
+ https://github.com/google-research/google-research/tree/

master/genomics_ood 49


https://github.com/google-research/google-research/tree/master/genomics_ood
https://github.com/google-research/google-research/tree/master/genomics_ood

Take home messages

+ Be cautious when using density estimates from deep

generative models as proxy for “similarity” to training data
— Can assign higher density to 00D inputs than training data!
— Novelty / Anomaly detection

50



Take home messages

+ Be cautious when using density estimates from deep
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— Can assign higher density to 00D inputs than training data!
— Novelty / Anomaly detection

+ Explaining the observed failure modes:

— Flow-based models: Can be explained through inductive
bias and the relative variances of the input distributions

— Autoregressive models: Can be explained through
background effect
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Take home messages

+ Be cautious when using density estimates from deep

generative models as proxy for “similarity” to training data
— Can assign higher density to 00D inputs than training data!
— Novelty / Anomaly detection

+ Explaining the observed failure modes:

— Flow-based models: Can be explained through inductive
bias and the relative variances of the input distributions

— Autoregressive models: Can be explained through
background effect

+ Solutions:

- Likelihood ratio using background model
— Typicality test
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Thanks!

+ Aki Matsukawa
+ Dilan Gorur

+ Emily Fertig

+ Eric Nalisnick
+ Jasper Snoek
+ Jie Ren

+ Josh Dillon

* Mark DePristo
* Peter Liu

* Ryan Poplin

* Yee Whye Teh
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Papers available on my webpage (link)

Out-of-distribution robustness of deep generative models
- Do deep generative models know what they don’t know? [5]
- Likelihood ratios for out-of-distribution detection [8]

+ Detecting out-of-distribution inputs to deep generative
models using a test for typicality [4]

Predictive uncertainty estimation in deep learning
* Hybrid models with deep and invertible features [6]

+ Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift [7]

+ Simple and scalable predictive uncertainty estimation using
deep ensembles [3]
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