Detecting out-of-distribution inputs using deep
generative models: Pitfalls and promises

Balaji Lakshminarayanan
balajiln@

Joint work with colleagues at DeepMind and Google

@ DeepMind

Goal: How do we build neural networks that
know what they don’t know?"

- Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].

Goal: How do we build neural networks that
know what they don’t know?"

- Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

* Dealing with train-test skew in production systems

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].

Goal: How do we build neural networks that
know what they don’t know?"

- Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

* Dealing with train-test skew in production systems
* Open-set recognition

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].

Goal: How do we build neural networks that
know what they don’t know?"

- Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

* Dealing with train-test skew in production systems
* Open-set recognition
+ Active learning for efficient data collection

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].

Goal: How do we build neural networks that
know what they don’t know?"

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

* Dealing with train-test skew in production systems
* Open-set recognition

+ Active learning for efficient data collection

- Reinforcement learning: (Safe) Exploration

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].

Goal: How do we build neural networks that
know what they don’t know?"

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

* Dealing with train-test skew in production systems
* Open-set recognition

+ Active learning for efficient data collection

- Reinforcement learning: (Safe) Exploration

* ... and many more!

Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [7].

Probabilistic Machine Learning

Discriminative vs Generative models

“Discriminative” Model “Generative” Model

Discriminative vs Generative models

vy oo\ A i
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is trained only on x ~ prran(X)

Discriminative vs Generative models

Y NS I
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is trained only on x ~ prran(X)

* p(y|x) is typically accurate on i.i.d test inputs, but can make
overconfident errors when asked to predict on
out-of-distribution (O0D) inputs

Discriminative vs Generative models

Y NS I
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is trained only on x ~ prran(X)

* p(y|x) is typically accurate on i.i.d test inputs, but can make
overconfident errors when asked to predict on
out-of-distribution (O0D) inputs

+ Use density model p(x) to decide when to trust p(y|x) [1]

4

Novelty Detection & Neural Network Validation

Inputs Unlike Training Data

if p(x™; @) <7,

then reject «*

Use p(X) modél to reject
inputs with density below
some threshold [Bishop, 1994].

Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick ! Akihiro M wa"! Yee Whye Teh' Dilan Gorur' Balaji Lakshminarayanan'

+ ldea: use normalizing flows to compute exact density p(x)
and p(y|x) in a single feed-forward pass

Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick ! Akihiro M wa"! Yee Whye Teh' Dilan Gorur' Balaji Lakshminarayanan'

+ ldea: use normalizing flows to compute exact density p(x)
and p(y|x) in a single feed-forward pass

+ Works well in some cases

Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick ! Akihiro M wa"! Yee Whye Teh' Dilan Gorur' Balaji Lakshminarayanan'

+ ldea: use normalizing flows to compute exact density p(x)
and p(y|x) in a single feed-forward pass

+ Works well in some cases

* The failure modes were very interesting, so we decided to
investigate this in detail ...

Published as a conference paper at ICLR 2019

DO DEEP GENERATIVE MODELS KNOW
WHAT THEY DON’T KNOW?

Eric Nalisnick*{ Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan*
DeepMind

Generative models for CIFAR

CIFAR-10 Training Images

==zé===a: Generative i p(x)
mil VES FEEW Model ! CIFAR-10

EHII.IQH |
M~ R :
E<nDnaia'E :
BEROLASE ,
- i
- |
= i

£ 3 9 ol S R S T
=T P N
mEEESENS Training

e
=
=
]
L]
5]
&
-
=]
~

Deep generative models where density p(x) can be computed:
* Flow-based models: GLOW [2]
- Auto-regressive models: PixelCNNs [9]
* Variational Auto-Encoders (lower bound)

Training on CIFAR and Testing on SVHN (OOD)

Training: CIFAR-10 Testing: SVHN

GENERATIVE
MODEL

p(xCIFAR-IO) § p(XSVHN)

Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images

1 :
EEE o
dEGREESESn

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464

(Lower is Better)

00005
EEN CIFAR10-TRAIN

o004 M CIFAR10-TEST

00003
00002
00001

00000
-12000 -10000 -8000 6000 4000

log p(X) (Higher is Better)

10

Training a Flow-Based Model on CIFAR-10

SVHN Test Images

1
2 |

A O O o [

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

00005
BN CIFAR10-TRAIN

oooos 8 CIFARIO-TEST
W SVHN-TEST

00003

00002

00001

00000
-12000 10000 -8000 6000 ~4000

log p(X) (Higher is Better)

1l

Training a Flow-Based Model on CIFAR-10

SVHN Test Images Bits(Per Dimen?ion
NLL / # dims / log 2)
AR fu2f o] v B 14 CIFAR10-Train 3.386
. ... ﬂ 3.464
L Dl S04

m: BigProblem! e

oooos M CIFAR10-TEST

W SVHN-TEST

00003

00002

00001

00000
-12000 -10000 8000 6000

4000
log p(X) (Higher is Better)

12

Model assigns high likelihood to constant

CIFAR-10 Training Images

=S - BBl
ERECENeE=S
Tl VES yEE
EEaEEaEEs P
T Bl
HE<s DR
EEESEULaNE
ANEEOMEXER
=S T PP
AR R ES RS

inputs too

Bits Per Dimension
(NLL/ # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR-10

Random 15.773
Constant (128) 0.589

13

Phenomenon holds for VAEs and PixelCNN too

000030 000045 000040
m—CIFARIO-TRAIN o o00i0 - CIFAR10-TRAIN CIFARLO-TRAIN
000025 WM CIFAR10-TEST CIFAR10-TEST 00003 CIFAR10-TEST
B SVHN-TEST oo SVHN-TEST 000030 SVHN-TEST
000020 000030
000025
000025
000015 000020
000020
o000s
000010 000015
000010 oo
000005
o 0000s 000005
000000 — 000000 — 90000
00 -20000 15000 10000 -5000 3 ~16000 1400012000 ~10000 8000 ~6000 4000 ~2000 ~16000-14000-12000-10000 3000 6000 4000 -2000 O

log p(X) log p(X) log p(X)
(a) PixelCNN (b) VAE with RNVP as encoder ~ (¢) VAE conv-categorical likelihood

The phenomenon is asymmetric w.r.t. datasets

0.0005
EEE CIFAR10-TRAIN
00004 BN CIFAR10-TEST
BN SVHN-TEST

0.0003

0.0002

0.0001

000?012000 -10000 —8000 -6000 —4000
log p(X)
CIFAR-10 vs SVHN

0.0006

EEE SVHN-TRAIN
SVHN-TEST
CIFAR10-TEST

0.0005

0.0004
0.0003
0.0002
0.0001

0.0000
10000 —9000 —8000 —7000 —6000 —5000 —4000 —3000 —2000

log p(X)
SVHN vs CIFAR-10

15

Additional OOD dataset pairs

000204 1t 4L
. FashionMNIST-TRAIN
= FashionMNIST-TEST

00015 - WEE MNIST-TEST

00010 -
00005 -

00000 4 | —— e P —
4000 ~3500 ~3000 ~2500 ~2000 ~1500 ~1000 ~500 O

log p(X)

FashionMNIST vs MNIST

00005 . .

W ColebA-TRAIN
CelebA-TEST

W SVHN-TEST

00004 -
00003 -
00002 -
00001 -

000004 r v " " -
14000 -12000 -10000 -8000 -6000 —4000 -2000

log p(X)

CelebA vs SVHN

L R R S S R S R

. imageNet-TRAIN
= imageNet-TEST
[CIFAR10-TEST
-
-

00004 -

CFAR100-TEST

0.0003 - SVHN-TEST

00000 4 4

106 506
ImageNet vs CIFAR-10
vs SVHN

16

Phenomenon holds throughout training

4.5
_ —— CIFAR-10 TRAIN
§ a0 —— CIFAR-10 TEST
= —— SVHN TEST
@]
‘O 3.5
C
(0]
£
- 3.0
@
o
0 25 K
=
[a]

2.0

0 20000 40000 60000 80000 100000
iterations

During Optimization

Ensembling does not fix the problem either

0.0005 0.0005
EEN CIFAR10-TRAIN
B CGFAR10-TEST
BN SVHN-TEST

Emm CIFAR10-TRAIN
0.0004 B CIFAR10-TEST
B SVHN-TEST

0.0004

0.0003 0.0003
0.0002 0.0002
0.0001 0.0001
0.0000 0.0000
-12000 -10000 -8000 —6000 —4000 —14000 —-12000 —10000 -8000 -6000 —4000 -2000 0
log p(X) log p(X)

CIFAR-10 vs SVHN CIFAR-10 vs SVHN
1 Glow Ensemble of 10 Glows

Explaining the failure mode for
Flow-based models

19

Flows: one slide summary

Define Z by a transformation of
another variable X:

Z = f(X)

Change of Variables Formula (X = 2):

w0y |2 = o

20

Flows: one slide summary

Define Z by a transformation of
another variable X:

7= f(x)

f(x) must be a bijection
(invertible 1:1 mapping)

x=fY%z) z=£f(x)

Change of Variables Formula (X = Z):

(0 |] =i

21

Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = 2):
another variable X:
Z=f(X df (X
) p (00 [L2 =50

f(x) must be a bijection
(invertible 1:1 mapping) /

Use simple base
distribution p_such
as Gaussian

x=f%z) z=£(x)

!

Use architecture such that
determinant of Jacobian
|df/dx| is easy to compute

22

Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = Z):

another variable X:

Z = f(X)

df (X)

(0 [L2 =50
f(x) must be a bijection
(invertible 1:1 mapping) / T
Use simple base Use architecture such that
distribution p, such determinant of Jacobian

x=1fYz) z=1£(x)

as Gaussian / |df/dx| is easy to compute

Compose simple f's to build a powerful model f = f of o...of

23

When would out-of-distribution g will have
higher log-likelihood than p*?

Mathematical characterization:

0 < Eqflog p(;)] — Ep- [log p(a; 0)]

Non-Training Training
Distribution Distribution

24

Explaining the observations using flow models

Mathematical characterization:

0 < Eq[log p(; 0)] — Ep-[log p(x; 6)]

Non-Training Training
Distribution Distribution Second Moment
of Training
8f Distribution
1 —
~ 1] [V own. (1o) + 92, g | 322 | 2, 50}

4 second Moment
of Non-Training
Distribution

Change-of-Variable
Terms

25

Explaining the observations using
Constant Volume GLOW (CV GLOW)

Mathematical characterization:

0 < Eq[logp(; 0)] — Ep- [log p(; 0)]

Non-Training Training
Distribution Distribution
Second Moment
of Training
Distribution
1 3 —
2
Y — . ' —
~ 2 Tr vmo Ingz(f(:z:O, ¢)) + V5, sl o, (Eq EP*)
C () —
4 { second Moment

of Non-Training
Distribution

Change-of-Variable
Terms

26

Explaining the observations using CV-GLOW

Plugging in the CV-Glow transform:

Tr { [Vio log p($0, 0)] (Eq — Ep*)} Second Moment Second Moment
of Non-Training of Training
c Distribution Distribution

8 —
a 9.2 logp z; ’(p Z quk (%] Z(Ug,h,w,c - 2*,h,w,c)

c=1 \k=1j=1 h,w

< 0 for all log-
concave densities Non-negative
(e.g. Gaussian) due to square

27

Explaining the observations using CV-GLOW

0 < Eq[logp(; 0)] — Ep- [log p(; 6)]

- . Second

Non-Training Training Moment of

Distribution Distribution Training
Distribution

Z(q,hwc p hwc)

Second Moment of
Non-Training
Distribution

28

Explaining the observations using CV-GLOW

0 < Eq[logp(a; 0)] — Eyp- [log p(a;)]

- = Second
Non-Training Training Moment of
Distribution Distribution Training
2 2
Z (aq,h J,(:di p').w,c)
h,u

Non-Training
Distribution

() CIFAR-10 vs SVHN (plugging in empirical moments)
@ Asymmetry

D Uniform Inputs

D Ensembling

D Early Stopping

29

Explaining the observations using CV-GLOW

0 < Eq[log p(x; 8)] — Eyp-[log p(a; 0))

- . Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution

2 2
Z(Uq,h,w,c ~ Opt hwie)
h,w

Second Moment of
Non-Training
Distribution

() CIFAR-10 vs SVHN (plugging in empirical moments)
[:] Asymmetry (due to sub. being non-commutative)
D Uniform Inputs

[:] Ensembling

D Early Stopping

30

Explaining the observations using CV-GLOW

0 < Eq[logp(z;)] — Ep- [log p(a; 0)]

. L Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution
c —
~ ZM_ g’,h,w,c)
c=1 h,w
Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
[:] Uniform Inputs

[:] Ensembling

D Early Stopping

31

Explaining the observations using CV-GLOW

0 < Eq[log p(; 0)] — Ep- [log p(a; 0)]

- . Second
Non-Training Training Moment of
Distribution Distribution Training

Non-Training
Distribution

D CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
C] Uniform Inputs (non-training 2nd moment is zero)
D Ensembling

[:] Early Stopping

32

Explaining the observations using CV-GLOW

0 < Eqllog p(a; 6)] ~ Ey- log p(a; 0)]

- L Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution

Z(Uq,hwc " hwc)

Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
D Uniform Inputs (non-training 2nd moment is zero)
[:] Ensembling

(sign doesn’t depend on model param. values)
O Early Stopping }

33

Explaining the observations using CV-GLOW

0 < Eq[logp(z; 0)] — Ep- [log p(x; 0)]

- L Second
Non-Training Training Moment of

Distribution Distribution Training
Distribution

Z(ag,h,w,c - 012" .h.,w,c)

hyaw

Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
C] Uniform Inputs (non-training 2nd moment is zero)

[:] Ensembling
(sign doesn't depend on model param. values)
(] Early Stopping

34

Explaining the observations using CV-GLOW

0 < Eq[logp(x; 0)] — Ep-[log p(x; 0)]

- — Second
Nqn-T_ralr?lng .Tra.mln.g Moment of
Distribution Distribution Training

Distribution

02 < 2 2
R 54 lqg_n(z!) Z Z(aq.h,w,v = O hwe)
lc=1 h,w
Second Moment of

Non-Training
Distribution

Hypothesis: If the second-order pmm v m

statistics do indeed dominate, we - -

should be able to control the
likelihoods by graying the images...

35

Explaining the observations using CV-GLOW

0 < Eqllogp(; 0)] — Ey- [log p(x; 0)]

- - Second
Non-Training Training Moment of
Distribution Distribution Training
Distribution
C
§ : 2 2
~ (aq,h,w,c - ap‘,h,w,c)
c=1 hyaw
Second Moment of
Non-Training
0014 —— CIFARLO istri i
oo I o Distribution
—— SVHN
0.010 - - - SVHN_GRAY

0.008

One weird trick to
increase your
likelihoods!

0.006

il
]
4
1l
il
L]
1)
1
[
N
"
"

0.004

0.002

0.000 e
~=10500-10000-9500 ~9000 ~8500 8000 —7500 ~7000 -6500 —6000

log p(X)

Follow-up Work

37

Detecting Out-of-Distribution Inputs to Deep
Generative Models Using a Test for Typicality

Eric Nalisnick; Akihiro Matsukawa, Yee Whye Teh, Balaji Lakshminarayanan®
DeepMind
{enalisnick, amatsukawa, ywteh, balajiln}@google.com

38

Motivating question: why don't we ever see

samples from the OOD set?

Samples from
Generative Model

MNIST:
Higher Likelihood

FashionMNIST:

Training Set

BIAPV TN RO
ANNY T\ ®© ¢ r
~ =T 0NN
NNO Mmoo —o N
oWV ~0
Ml NN 0"y M

T ﬂﬂz'@

11 4 o § i

39

Typical sets versus Mode

+ Mode can be very atypical of the distribution in high
dimensions

40

Typical sets versus Mode

+ Mode can be very atypical of the distribution in high
dimensions
* High-dimensional Gaussian:
- Modeisat u
— Typical samples lie near the shell

PROBABILITY
DENSITY

Highest
Density

TYPICAL SET PROBABILITY

DENSITY

Samples VOLUME

Olod'/*) DisTANCE FROM MODE Distance From Mope

(a) Gaussian Example (b) Mlustration (c) Simulation

Figure: High dimensional Gaussian

40

Could similar phenomenon happen with
deep generative models too?

High Density HIGH MASS High Probability

(Samples)

41

Definition of typical sets

Definition 2.1. e-Typical Set [11]

For a distribution p(x) with support x € X, the e-typical set

AN[p(x)] € XN is comprised of all N-length sequences that satisfy

N
Blp(d] - € < 7+ > loga(en) < Hp(x)] +¢

where Hp(x)] = [, p(x)[-log p(x

n=1

x)|dx and € € R* is a small constant.

42

Definition of typical sets

Definition 2.1. e-Typical Set [11] For a distribution p(x) with support x € X, the e-typical set
AN[p(x)] € XN is comprised of all N-length sequences that satisfy

N
Blp(d] - € < 7+ > loga(en) < Hp(x)] +¢

n=1

where H[p(x)] = [, p(x)[-log p(x)]dx and ¢ € R is a small constant.

Testing for typicality

* If a batch x4, ..., Xy is in the typical set, then the average
negative log likelihood should be close to the entropy.

+ Can use tools from statistical hypothesis testing literature

42

Testing for Typicality improves OOD detection

== ID: SVHN-TEST.

= 00D: CIFARIO-TEST -

= ID: SVHN-TEST = ID: SVHN-TEST
== 00D: CIFAR100-TEST -

-

= 00D: ImageNet-TEST -

Fraction of Batches Classified as 00D

Batch Size (M)

(a) SVHN Train, CIFARI0 Test

1 = ID: CIFARIOTEST
1 == 0OD: SVHN-TEST -

ee—

g
8
3
3

Fraction of Batches Cla:

mBa(‘:h 5;& (?:10:
(d) CIFAR10 Train, SVHN Test
.

8.

== ID: ImageNet-TEST
== 00D: SVHN-TEST

Fraction of Batches Classified as 00D
Fraction of Batches Classified as 00D

Batch Size (M)

(b) SVHN Train, CIFAR100 Test (c) SVHN Train, ImageNet Test

Batch Size (M)

@= ID: CIFAR10-TEST
@= 0OD: ImageNet-TEST -

= ID: CIFAR10-TEST
@= 0OD: CIFAR100-TEST -

e

Fraction of Batches Classified as 00D

Fraction of Batches Cla:

Batch Size (M) Batch Size (M)

(e) CIFARIO0 Train, CIFAR100 Test (f) CIFAR10 Train, ImageNet Test

: ImageNet-TEST
00D: CIFAR100-TEST -

1D: ImageNet-TEST.
famm 00D: CIFARIO-TEST -

Batch Size (M)

(g) ImageNet Train, SVHN Test

Fraction of Batches Classified as 00D

Batch Size (M)

(h) ImageNet Train, CIFARIO Test (i) ImageNet Train, CIFAR100 Test

Batch Size (M)

Figure: Effect of batch size on AUC of OOD detection

43

Better OOD detection for genomic sequences

Likelihood Ratios for Out-of-Distribution Detection

Jie Ren* ' Peter J. Liu Emily Fertig'
Google Research Google Research Google Research
jjren@google.com peterjliu@google.com emilyaf@google.com
Jasper Snoek Ryan Poplin Mark A. Depristo
Google Research Google Inc. Google Inc.
jsnoek@google.com rpoplin@google.com mdepristo@google.com
Joshua V. Dillon Balaji Lakshminarayanan*
Google Research DeepMind
jvdillon@google.com balajiln@google.com

44

Explaining the failure mode for PixelCNN

+ PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

+ Background pixels dominate the likelihood

=]]
<o]) s
fAa8
il I

log pg(z4)

6.0
5.4
4.8
42
36
3.0
24
18
12
0.6

45

Explaining the failure mode for PixelCNN

+ PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

+ Background pixels dominate the likelihood. Explains why
MNIST is assigned higher likelihood.

(W) (78] 7 :
«({ 0 (7]<lr3 :
AAAA ~03 :
EDRE 2572 :

log py(q)

46

Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker

can be dominant
the focus

p(x) =|pxp)|p(xs)

47

Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker

can be dominant
the focus

p(x) =|pxp)|p(xs)

* Training a background model on perturbed inputs.
Compute the likelihood ratio

po(x) — 1o ﬁ(XB) po(xs) ~1lo po(xs)

LLR(X) =].Og De, (X) B Ds, (XB) De, (XS) Do, (XS)

47

Likelihood ratio improves OOD detection for
PixelCNN

* PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

* Likelihood Ratio (using background model) focuses on
the semantic pixels and significantly outperforms
likelihood on OOD detection .

~[==f V77 SASH EAN
< [0l 7573 HEnA
fAfA ~v~03 MNEAE IEE
ERE o572 MAOAEE AERE

log pp(z4) log po(xq) — log py,(4)

w
ReslENs

48

Likelihood ratio significantly improves OOD
detection on genomics data too

Method AUROC
Likelihood 0.630
Likelihood Ratio 0.755

Classifier-based p(ylx) 0.622

Classifier-based Entropy 0.622

Classifier-based ODIN 0.645

Classifier Ensemble 5 0.673

Classifier-based 0.496
Mahalanobis Distance

+ Realistic benchmark + open-source code
+ https://github.com/google-research/google-research/tree/

master/genomics_ood 49

https://github.com/google-research/google-research/tree/master/genomics_ood
https://github.com/google-research/google-research/tree/master/genomics_ood

Take home messages

+ Be cautious when using density estimates from deep

generative models as proxy for “similarity” to training data
— Can assign higher density to 00D inputs than training data!
— Novelty / Anomaly detection

50

Take home messages

+ Be cautious when using density estimates from deep

generative models as proxy for “similarity” to training data
— Can assign higher density to 00D inputs than training data!
— Novelty / Anomaly detection

+ Explaining the observed failure modes:

— Flow-based models: Can be explained through inductive
bias and the relative variances of the input distributions

— Autoregressive models: Can be explained through
background effect

50

Take home messages

+ Be cautious when using density estimates from deep

generative models as proxy for “similarity” to training data
— Can assign higher density to 00D inputs than training data!
— Novelty / Anomaly detection

+ Explaining the observed failure modes:

— Flow-based models: Can be explained through inductive
bias and the relative variances of the input distributions

— Autoregressive models: Can be explained through
background effect

+ Solutions:

- Likelihood ratio using background model
— Typicality test

50

Thanks!

+ Aki Matsukawa
+ Dilan Gorur

+ Emily Fertig

+ Eric Nalisnick
+ Jasper Snoek
+ Jie Ren

+ Josh Dillon

* Mark DePristo
* Peter Liu

* Ryan Poplin

* Yee Whye Teh

51

Papers available on my webpage (link)

Out-of-distribution robustness of deep generative models
- Do deep generative models know what they don’t know? [5]
- Likelihood ratios for out-of-distribution detection [8]

+ Detecting out-of-distribution inputs to deep generative
models using a test for typicality [4]

Predictive uncertainty estimation in deep learning
* Hybrid models with deep and invertible features [6]

+ Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift [7]

+ Simple and scalable predictive uncertainty estimation using
deep ensembles [3]

52

http://www.gatsby.ucl.ac.uk/~balaji/

|
[2

[3

4

(5]

[6

[7

8]

[l

Christopher M Bishop. Novelty Detection and Neural Network Validation. 1994.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. In NeurIPS, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In NeurlPS, 2017.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan.
Detecting out-of-distribution inputs to deep generative models using a test for
typicality. arXiv preprint arXiv:1906.02994, 2019.

Eric Nalisnick, Akihiro Matsukawa, YeeWhye Teh, Dilan Gorur, and Balaji
Lakshminarayanan. Do Deep Generative Models Know What They Don’'t Know? In
ICLR, 2019.

Eric Nalisnick, Akihiro Matsukawa, YeeWhye Teh, Dilan Gorur, and Balaji
Lakshminarayanan. Hybrid models with deep and invertible features. In ICML, 2019.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin,
Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In
NeurlPS, 2019.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A DePristo,
Joshua V Dillon, and Balaji Lakshminarayanan. Likelihood ratios for
out-of-distribution detection. In NeurlPS, 2019.

Adron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves,
et al. Conditional image generation with pixel CNN decoders. In NeurlPS, 2016.

53

