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Quantifying Uncertainty In Deep Learning

• What do we mean by predictive uncertainty? Examples:

– Classification:output label y∗ alongwith confidence
– Regression: outputmean and variance

• Good uncertainty scores quantify when we can trust themodel’s predictions
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How do we measure the quality of
predictive uncertainty?
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Challenges

• Lack of ground truth
• Cost of down-stream decisions may be difficult to model
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1. Calibration

• Measures how well model’s predicted confidence alignswith observed accuracy

• Does predicted probability of correctness (confidence)match the observed frequency of correctness (accuracy)?
• Weather forecasting example: Of all the days where themodel predicted rain with 80% probability, what fraction didwe observe rain?

– 80% implies perfect calibration– Less than 80% implies model is overconfident– Greater than 80% implies model is under-confident
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2. Robustness to dataset shift

• Does the system exhibit higher uncertainty on inputs faraway from training data?
– We expect p(y|x) to be more accurate when x ∼ pTRAIN(x),than on out-of-distribution (OOD) inputs

– Need to measure ability of model to reject OOD inputs.
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How do deep networks fare?
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Deep networks are poorly calibrated
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High confidence predictions on OOD inputs
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Applications of neural networks that
know what they don’t know

• Better decision making

• Dealing with dataset shift in real-world ML systems
– Covariate shift between train and test– Open-set classification: May be asked to predict on testinputs that do not belong to any of the training classes

• Improve human-in-the-loop systems
• Better active learning to collect data in model blindspots
• Reinforcement learning: (safe) exploration
• Build modular systems
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Discriminative models
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Discriminative vs Generative models

• p(y|x) is typically accurate when x ∼ pTRAIN(x), but canmake overconfident errors when asked to predict on OOD

• Use density model p(x) to decide when to trust p(y|x)[Bishop, 1994]
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Novelty Detection & Neural Network Validation
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Hybrids of Generative & Discriminative models

• Idea: use normalizing flows to compute exact density p(x)and p(y|x) in a single feed-forward pass

• – Density model p(x) can address dataset shift,– Decompose into two types of uncertainty
• Works well in some cases. The failure modes were veryinteresting, so we decided to investigate this in detail ...
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Generative models for CIFAR

Deep generative models where density p(x) can be computed:
• Flow-based models: GLOW [Kingma and Dhariwal, 2018]• Auto-regressive models: PixelCNNs [van den Oord et al.,2016]• Variational Auto-Encoders (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)
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Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Model assigns high likelihood to constant
inputs too
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Phenomenon holds throughout training
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Ensembling does not fix the problem either
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Explaining the failure mode for
Flow-based models
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Flows: one slide summary
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Flows: one slide summary
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Flows: one slide summary
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Flows: one slide summary
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When would out-of-distribution q will have
higher log-likelihood than p∗?
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Explaining the observations using flow models
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Explaining the observations using
Constant Volume GLOW (CV GLOW)
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Explaining the observations using CV-GLOW
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Explaining the observations using CV-GLOW
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Explaining the observations using CV-GLOW
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Take home messages

• Deep generative models are attractive but have problemsdetecting out-of-distribution data.

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Novelty detection– Anomaly detection

• For flow-based models, the phenomenon can be explainedthrough the relative variances of the input distributions
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Explaining the failure mode for PixelCNN
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Explaining the failure mode for PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Background pixels dominate the likelihood
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Explaining the failure mode for PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Background pixels dominate the likelihood. Explains why
MNIST is assigned higher likelihood.
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Likelihood Ratio to distinguish
Background vs Semantics

• Input x consists of background xB and semanticcomponent xS. Examples:– Images: background versus objects– Text: stop words versus key words– Genomics: GC background versus motifs– Speech: background noise versus speaker

• Training a background model on perturbed inputs.Compute the likelihood ratio
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Likelihood ratio improves OOD detection for
PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Likelihood Ratio (using background model) focuses on
the semantic pixels and significantly outperforms
likelihood on OOD detection .
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Likelihood ratio significantly improves OOD
detection on genomics data too
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Motivating question: why don’t we ever see
samples from the OOD set?
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Typical sets versus Mode

• Mode can be very atypical of the distribution in highdimensions

• High-dimensional Gaussian:– Mode is at µ– Typical samples lie near the shell

Figure: High dimensional Gaussian
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Could similar phenomenon happen with
deep generative models too?
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Definition of typical sets

Testing for typicality
• If a batch x1, . . . , xM is in the typical set, then the averagenegative log likelihood should be close to the entropy.
• Can use tools from statistical hypothesis testing literature
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Testing for Typicality improves OOD detection

Figure: Effect of batch size on AUC of OOD detection 59



Density of states for OOD detection

Using multiple statistics can increase power of the test in
single-sample setting [Morningstar et al., 2020]
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Predictive Uncertainty in Deep Learning:
Large-Scale Benchmark
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Popular methods

• (Vanilla) Maximum softmax probability [Hendrycks andGimpel, 2016]
• (Temp Scaling) Post-hoc calibration by temperature scalingusing i.i.d. validation set [Guo et al., 2017, Platt, 1999]
• (Dropout) Monte-Carlo Dropout [Gal and Ghahramani, 2016,Srivastava et al., 2014] with rate p
• (SVI) Stochastic Variational Bayesian Inference [Blundellet al., 2015, Graves, 2011, Wen et al., 2018].• (LL) Approximate Bayesian inference for the parameters ofthe last layer only [Riquelme et al., 2018]– (LL SVI) Mean field SVI on the last layer only– (LL Dropout) Dropout only on activations before last layer
• (Deep Ensembles) Ensembles of M networks trainedindependently on the entire dataset using randominitialization [Lakshminarayanan et al., 2017]
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Datasets and Architectures

• Image classification (convolutional neural networks)
– MNIST– CIFAR-10– ImageNet

• Text classification (LSTMs)
• Criteo Kaggle Display Ads Challenge (MLPs)

– dataset with class-imbalance
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Goals of this benchmark

Questions of interest:
• How trustworthy are the uncertainty estimates of differentmethods under dataset shift?
• How do uncertainty and accuracy of different methodsvary for different datasets and model architectures?
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Dataset shift: ImageNet-C

Figure: Image source: [Hendrycks and Dietterich, 2019]
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Dataset shift: Varying intensity on ImageNet-C

Figure: Increasing intensity of corruption
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Accuracy decreases as dataset shift increases

68



Calibration also decreases significantly as
dataset shift increases

Model is overconfident even though it is way less accurate.
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Calibration under dataset shift
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Calibration under dataset shift

We observe similar trends on text and Criteo experiments as well
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Calibration under dataset shift

We observe similar trends on text and Criteo experiments as well

71



Results on Criteo experiments
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Deep Ensembles: A Loss landscape
perspective [Fort et al., 2019]

See slides from our talk at the Bayesian deep learningworkshop, NeurIPS 2019 for more info.
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Function space similarity
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t-SNE of trajectories
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Diversity versus Accuracy trade-off

• Deep ensembles achieve better accuracy versus diversitytrade-off than current scalable Bayesian neural nets
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Putting it all together
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Recent Follow-up Work
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Bayesian deep ensembles via the Neural
Tangent Kernel

79



AugMix [Hendrycks et al., 2020]

• Better data augmentation (composing base operationsand ‘mixing’ them) and self-supervised learning cansignificantly improve calibration under dataset shift.
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Single model uncertainty [Liu et al., 2020]

• Spectral-normalized Neural Gaussian process for bettersingle model uncertainty pθ(y|x)• Replace last-layer with GP layer and add biLipschitzconstraint on mapping (Spectral Normalization)
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SNGP on text benchmark using BERT
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SNGP on image benchmark
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Papers available on my webpage (link)

Predictive uncertainty estimation in deep learning• Simple and scalable predictive uncertainty estimation using deep ensembles[Lakshminarayanan et al., 2017]• Can you trust your model’s uncertainty? Evaluating predictive uncertainty under
dataset shift [Ovadia et al., 2019]• AugMix: A simple data processing method to improve robustness and uncertainty[Hendrycks et al., 2020]• Deep Ensembles: A loss landscape perspective [Fort et al., 2019]• Bayesian Deep Ensembles via the Neural Tangent Kernel [He et al., 2020]

• Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness [Liu et al., 2020]

Out-of-distribution robustness of deep generative models• Hybrid models with deep and invertible features [Nalisnick et al., 2019a]• Do deep generative models know what they don’t know? [Nalisnick et al., 2019b]• Likelihood ratios for out-of-distribution detection [Ren et al., 2019]• Detecting out-of-distribution inputs to deep generative models using a test for
typicality [Nalisnick et al., 2019]• Density of States Estimation for Out-of-Distribution Detection [Morningstar et al.,2020]
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