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Quantifying Uncertainty In Deep Learning

* Predict output distribution p(y|x) rather than point estimate

— Classification: output label y* along with confidence

- Regression: output mean and variance

+ What's a “good” predictive uncertainty estimate?

— Calibration

- Higher uncertainty on out-of-distribution (O0OD) examples

+ Popular solution: Bayesian deep learning (MCMC, VI)
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Why Bayesian deep learning?

+ Bayesian Model Averaging (BMA) in a nutshell:

— Specify prior over parameters p(6)
— Compute posterior distribution of parameters p(6|D)
— Translate parameter uncertainty to predictive uncertainty
+ BMA satisfies the axioms of probability and protects
against “Dutch books”. BMA is optimal if:

— “prior is correct” i.e. true model is within hypothesis class
— true posterior can be computed exactly

Is there an alternative to BMA for quantifying predictive
uncertainty?



Yes!

Spotlight slide: BDL workshop @ NeurlPS 2016
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Our contribution: simple yet powerful baseline

Probabilistic, but non-Bayesian, baseline
+ Performs well on evaluation metrics
+ Simple to implement (minimal changes to baseline)

- Scalable to large datasets (e.g. ImageNet)
* Robust:

- Works for different output types (classification/regression)
- Works for different architectures
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A Simple Recipe for Uncertainty Estimation

. Let neural network parametrize a distribution pg(y|x).
— Classification: softmax parametrizes discrete distribution
- Regression: Gaussian with mean 19(x) & var o3(x)
. Use a proper scoring rule as training criterion.
— Classification: cross entropy loss
- Regression: Gaussian likelihood mean 1¢(x) & var o3(x)
. (Optional) Augment with adversarial training
- Augment (x + Ax,y) where Ax = —e sign (Vx |ng9(y|X))
— Encourages p(y|x) to be similar to p(y|x + Ax)
Train an ensemble of M networks with random initialization
Combine predictions at test time

PP =5 Zpem (VIX, Om)

m=1

Model combination & not Bayesian Model Averaging



Results on a toy regression task
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+ Left plot: non-probabilistic network, use empirical
variance between 5 networks as uncertainty

+ Middle plot: single probabilistic network
* Right plot: ensemble of 5 probabilistic networks.




Results on UCI regression benchmark datasets

Datasets RMSE NLL
PBP MC-dropout Deep Ensembles PBP MC-dropout  Deep Ensembles

Boston housing 3.01£0.18 2.97 +0.85 3.28 +1.00 2.57 +£0.09 2.46+0.25 2.41+£0.25
Concrete 5.67 £0.09 5.23+0.53 6.03 +0.58 3.16 £ 0.02 3.04 +0.09 3.06 £ 0.18
Energy 1.80 £ 0.05 1.66 +0.19 2.09 +0.29 2.04+£0.02 199 +0.09 1.38 £ 0.22
Kin8nm 0.10 £0.00 0.10 £0.00 0.09 + 0.00 -0.90 £ 0.01 -0.95+0.03 -1.20 + 0.02
Naval propulsion plant | 0.01+0.00 0.01+ 0.00 0.00 + 0.00 -3.73+0.01 -3.80+0.05 -5.63 £ 0.05
Power plant 4.12 £ 0.03 4.02+0.18 4.11+£0.17 2.84+0.01 2.80+0.05 2.79 + 0.04
Protein 473 £0.01 4.36 +0.04 4.71+0.06 2.97+0.00 2.89+0.01 2.83+0.02
Wine 0.64 +0.01 0.62 + 0.04 0.64 + 0.04 0.97 +£0.01 0.93+0.06 0.94 +0.12
Yacht 1.02+0.05 1.11+0.38 1.58 +0.48 1.63+0.02 1.55+0.12 1.18 +0.21
Year Prediction MSD 8.88 £ NA 8.85 + NA 8.89 £ NA 3.60 = NA 3.59 £ NA 3.35+ NA

+ Our method achieves better NLL, but slightly worse RMSE
in some cases

* Even though non-Bayesian, our method is competitive with
probabilistic backpropagation (PBP) and MC-Dropout



Calibration results on Year Prediction MSD

Probabilistic networks (left) are much better calibrated than
non-probabilistic networks (right).
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Classification Results on MNIST using MLP
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Classification Results on MNIST using MLP
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Adversarial training leads to further improvements
Similar results on SVHN using convolutional nets

We also show results on ImageNet to illustrate scalability
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Evaluating predictive uncertainty on OOD

+ Goal: check if the methods are more uncertain while

testing on out-of-distribution (OOD) dataset.

* Setup:

— Train on MNIST

- Evaluate on known test set (MNIST) and unknown test set
(NotMNIST) (both 28 x 28 gray-scale images)

+ Also trained / tested on different datasets:

— Train on SVHN / Test on CIFAR (both 32 x 32 x 3 images)
— ImageNet: train on dog categories and test on non-dog
categories

1l



Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)

Ensemble + AT MC dropout 0.1 Ensemble + AT MC dropout 0.1
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entropy values entropy values entropy values entropy values

Single network & MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are more robust.
Similar results on SVHN-CIFAR and ImageNet (dogs vs

no-dogs).

12
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13



Accuracy Vs Confidence

Model abstains from making prediction when confidence <
Evaluate test accuracy only on examples where max, p(y|x) > 7
Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)

13



Accuracy Vs Confidence

Model abstains from making prediction when confidence <
Evaluate test accuracy only on examples where max, p(y|x) > 7
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* MC-dropout can produce overconfident wrong predictions,
whereas deep ensembles are significantly more robust.
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Accuracy Vs Confidence

Model abstains from making prediction when confidence <
Evaluate test accuracy only on examples where max, p(y|x) > 7
Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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* MC-dropout can produce overconfident wrong predictions,
whereas deep ensembles are significantly more robust.
+ Similar results on ImageNet (dogs vs no-dogs)



Qualitatively evaluating predictive uncertainty
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+ Top two rows: examples with lowest disagreement
* Bottom two rows: examples with highest disagreement
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Why would this work?

* Modeling distribution pg(y|x) captures inherent ambiguity

(aleatoric uncertainty).

- Ensemble approximates epistemic uncertainty

— Training on bootstrap samples has theoretical justification

— In practice, using entire dataset works better.

* Interesting similarities to ensembles of decision trees

- Breiman'’s random forests [1] used bagging

— Later work on Extremely Randomized Trees found bagging
to be unnecessary if there was sufficient randomization [3]

- (Non-Bayesian) Ensembles of probabilistic decision trees
can give good uncertainty estimates in practice [4]
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Clinically applicable deep learning for diagnosis
and referral in retinal disease
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Al accelerates diagnosis
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Targeted microbiome therapy for thrombosis
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Triage Recommendation for Patients with Eye
Diseases using OCT scans

+ Optical Coherence Tomography (OCT)
— Creates a high-resolution 3D scan of the retina
— OCT technique works like ultrasound but with light

+ Collaboration with Moorfields Eye Hospital

Optic Disk

Macula

Back of the eye (view through pupil)

17



Use case: Referral suggestion from OCT scan

Urgent (days)

Semi-Urgent (weeks)
Routine (months)

Observation only
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Two-Stage Architecture

+ First: ensemble of segmentation networks to the OCT scan
- Second: ensemble of classification networks

14,884 training tissue maps with confirmed
diagno:;ls and referral decision
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segmentation
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) diagnosis probabilities
Tissue map hypotheses and referral suggestion
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Two-Stage Architecture (continued)

+ Segmentation map provides detailed, fully clinically

interpretable representation.
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Two-Stage Architecture (continued)

+ Second stage classification network learns knowledge that
is independent of the used scanning device.

scanning device independent
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Two-Stage Architecture (continued)

+ Our framework reaches the performance of human experts

14,884 training tissue maps with confirmed
diagnosis and referral decision
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- Ensemble 5 segmentation instances and 5 classification
instances to get 25 predictions for each diagnosis.
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Receiver Operating Characteristic (ROC) Curve

« We achieve an area under the curve of 99.2

Urgent Referral Zoom
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Receiver Operating Characteristic (ROC) Curve

Evaluated human performance on this task using 8 experts
* Only two of the top experts from Moorfields with over 20
years experience were on par with our network
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Gold Standard Referral

Full referral results

+ Our method achieves similar results in the standard triage
with 4 referral decisions too

Referral Decisions:
1. Urgent (within days) 3. Routine (within months)

2. Semi-urgent (within weeks) 4. Observation only

Our model Expert 1 Expert 2
(OCT only) (OCT+fundus+notes) (OCT+fundus+notes)
Predicted Referral Predicted Referral Predicted Referral
Semi- _ Obser- Semi- Obser- Semi- Obser-
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Take home message

* Non-Bayesian, Probabilistic solutions can be surprisingly
effective at estimating predictive uncertainty
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the limitations

— Better ways to specify priors
— Better ways to improve approximate posteriors

27


http://www.gatsby.ucl.ac.uk/~balaji/

Take home message

* Non-Bayesian, Probabilistic solutions can be surprisingly
effective at estimating predictive uncertainty

+ Strong non-Bayesian baselines are valuable to understand
the limitations

— Better ways to specify priors
— Better ways to improve approximate posteriors

Papers available on my webpage (link)
— Simple and scalable predictive uncertainty estimation using
deep ensembles, NeurlPS, 2017 [5]
— Clinically applicable deep learning for diagnosis and referral
in retinal disease, Nature medicine, 2018 [2]
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Thanks!
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