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ABSTRACT

Hidden Markov models are well-known in analysis of random pro-
cesses, which exhibit temporal or spatial structure and have been
successfully applied to a wide variety of applications such as but
not limited to speech recognition, musical scores, handwriting, and
bio-informatics. We present a novel algorithm for estimating the
parameters of a hidden Markov model through the application of
a non-negative matrix factorization to the joint probability distri-
bution of observations from two consecutive time steps. We start
with the discrete observation model and extend the results to the
continuous observation model through a non-parametric approach
of kernel density estimation. For both the cases, we present results
on a toy example and compare the performance with the Baum-
Welch algorithm.

1. INTRODUCTION

Hidden Markov models (HMMs) are now well-known for over
four decades. HMMs are used to characterize processes with spe-
cific temporal or spatial structure and provide significant advan-
tage over models that assume independence, when the temporal
or spatial independence assumption is invalid. For example in
processing text documents, words exhibit dependence on the pre-
ceding content and the use of HMM may lead to improved mod-
eling and inference as compared to an independent word model.
HMM is deployed in a variety of applications such as but not lim-
ited to speech processing, motion capture, bio-informatics, and
hand-writing (see [1] for a review of the topic and related ref-
erences therein). In classification, a HMM can be extracted for
each class (e.g., using the maximum likelihood (ML) principle)
in the training phase and the Bayes risk minimizing maximum a-
posteriori classifier can be used to optimally determine which of
several HMMs is most likely to generate a sequence of test obser-
vations.

Commonly used in implementing HMM ML parameter esti-
mation is the well-known Baum-Welch algorithm [1]. The Baum-
Welch algorithm is a generalized expectation-maximization (EM)
implementation of the ML estimator. Generalized EM is guar-
anteed to produce a sequence of non-decreasing likelihood val-
ues converging to a local maximum of the likelihood and as such
Baum-Welch inherits such property. On the other hand, fast con-
vergence is not guaranteed. With the Baum-Welch algorithm, the
computational complexity of each iteration depends linearly on the
length of the observation sequence. When dealing with long se-
quences, the use of Baum-Welch algorithm may be prohibitive if
a lot of iterations are required. We are interested in developing
methods that alleviate this problem.

Non-negative matrix factorization (NNMF) [2] is a computa-
tionally efficient method for factorizing a matrix into non-negative
factors and has been successfully applied for various applications
such as text mining, spectral data analysis [3], face recognition
[4] etc. There has been little previous work in the application of
NNMF methods for HMM. In [5], the authors employ a clever re-
parametrization of the traditional HMM problem [1] and compute
a global solution based on singular value decomposition (SVD) for
their proposed parametrization. In [6], the authors employ NNMF
on higher-order transition matrices (unlike the first-order transition
matrix used in this paper) to compute the parameters of HMM.
However, their NNMF formulation is based on minimization of
I-divergence unlike the least squares criterion used in this paper.
Moreover, both of these papers assume that the observations are
discrete. To the best of our knowledge, there has been no previ-
ous work on the application of NNMF to HMMs with continuous
observations.

In this paper, we present a novel estimator of the HMM param-
eters that is based on a rank-constrained NNMF of the empirical
estimate of the joint distribution of two consecutive observations.
For observations that are discrete random variables, we present a
solution that is directly based on NNMF. The computational com-
plexity of our method is independent of the length of the data se-
quence. We extend the method for observations that are contin-
uous random variables through a kernel formulation. We present
two toy examples to illustrate the performance of the method. For
the discrete HMM, we provide both qualitative and quantitative
comparisons of our method to the Baum-Welch algorithm. For the
continuous observations case, we provide a qualitative comparison
to the Baum-Welch algorithm.

In Section 2, we formulate the problem of HMM parameter
estimation for the discrete and continuous observations model. In
Section 3, we describe the algorithms to estimate the HMM param-
eters. In Section 4, we present two toy examples to demonstrate
the performance of the proposed algorithms. Finally, Section 5
provides a summary of the paper.

2. PROBLEM FORMULATION

We consider the HMM as presented through the graphical model
in Fig. 1(a). The hidden state at timei is denoted bys(i) and the
observed output at timei is denoted byx(i). We assume that the
state is a discrete random variable (RV), which takes upon one ofL
values fromS = {1, 2, . . . , L}. The state transition probability is
denoted byS(s2|s1) , P (s(i+1) = s2|s(i) = s1). We make the
assumption that the process is stationary and hence we can write
the stationary state probabilityS(s) , P (s(i) = s). We choose
the state joint probabilityS(s1, s2) = P (s(i) = s1, s(i + 1) =



x(i − 1) x(i) x(i + 1) x(i + 2)

s(i − 1) s(i) s(i + 1) s(i + 2)

· · · · · ·

(a)

x(i) x(i + 1)

s(i) s(i + 1)

(b)

Fig. 1. Graphical models for HMM (a) a complete Markov chain
(b) a two-step Markov chain

s2) instead of the transition matrix to represent the model. Note
that the joint state probabilityS(s1, s2) can be obtained from the
transitionS(s2|s1) and the stationary state probabilityS(s1) by
Bayes ruleS(s1, s2) = S(s2|s1)S(s1). Moreover, the station-
ary marginalS(s1) can be obtained from the transition probabil-
ity by solving the linear equationS(s2) =

∑

s1
S(s2|s1)S(s1)

for all s2 ∈ S. The observationx(i) can be either discrete or
continuous and takes upon a value inX . We denote the condi-
tional distribution of the observationx(i) given the states(i) by
P (x|s) , P (x(i) = x|s(i) = s) : X ×S → R. GivenS andX ,
the process can be parameterized by the pairλ = {S(·, ·), P (·|·)}.
We refer the reader to [1] for a more detailed introduction to HMM.

The core of the HMM parameter estimation method presented
here relies on the factorization of the joint probability of two con-
secutive observationsQ(x1, x2) , P (x(i+1) = x2, x(i) = x1).
Note that we are estimating the parameters of HMM based on the
model in Fig. 1(b). We can writeQ(x1, x2) as

Q(x1, x2) =
∑

s1,s2

P (x1|s1)S(s1, s2)P (x2|s2). (1)

If x(i) is a discrete RV andX = {1, 2, . . . , M}, then (1) can be
written in a matrix form as

Q = PSP T . (2)

whereQ, P , andS areM × M , M × L andL × L matrices,
respectively. Note that in this matrix form, all three matricesQ, P ,
andS are non-negative and that the sum-to-one property forQ and
S is of the form

∑

x1,x2
Q(x1, x2) = 1 and

∑

s1,s2
S(s1, s2) =

1 or in matrix notation1T Q1 = 1 and1T S1 = 1, where1 is
the vector of all ones. The sum-to-one property forP is of the
form

∑

x1
P (x1|s1) = 1 for all s1 ∈ S or in matrix notation

1T P = 1T .

2.1. Discrete observations HMM parameter estimation

In general, the problem of HMM parameter estimation can be
stated as: findP andS given the observations:x(1), x(2), . . . , x(n).

Here, we restrict the problem to findingP andS using the empir-
ical estimate ofQ given by

Q̂(x1, x2) =
1

n − 1

n−1
∑

i=1

I(x(i) = x1)I(x(i + 1) = x2), (3)

for all (x1, x2) ∈ X × X . We would like to point out that the
simplicity of our formulation (in contrast to [6]) comes with a cost.
Not all necessary statistics are used and hence the efficiency of an
estimator that relies only on̂Q is not guaranteed. We consider the
nonlinear least-squares criterion for estimatingP andS based on
the following optimization problem:

min
P∈RM×L

S∈RL×L

‖Q̂ − PSP T ‖2

subject to 1T P = 1T , 1T S1 = 1, P ≥ 0, S ≥ 0, (4)

whereX ≥ 0 is used here as a shorthand notation forXij ≥ 0 for
all i, j. Note that an alternative formulation of the problem using
the KL-divergence can be considered as well:

min
P∈RM×L

S∈RL×L

∑

ij

Q̂ij log(Q̂ij/(PSP T )ij)

subject to 1T P = 1T , 1T S1 = 1, P ≥ 0, S ≥ 0. (5)

In this paper, we proceed concentrating only on the problem for-
mulation in (4). Note that this problem is not convex and may
have multiple local minima. Key to the algorithm that is presented
in the next section is the low-rank factorization of theM ×M ma-
trix Q into a product ofM ×L, L×L, andL×M matrices. Note
that except for the creation of̂Q in (3), the problem described in
(4) does not depend onn, the length of the observation sequence.
Hence, this problem formulation is attractive when dealing with
long sequences.

2.2. Extension to continuous observations

Next, we consider the continuous observations model. The nota-
tions vary in the following:

1. X = Rd

2. p(x(i) = x|s(i) = s) corresponds to the probability den-
sity function of the observations, i.e.,

∫

X
p(x(i) = x|s(i) =

s)dx = 1 andp(x(i) = x|s(i) = s) ≥ 0.

3. p(x(i) = x1, x(i+1) = x2) is the joint probability density
function ofx(i) andx(i + 1).

With these modifications, the low rank decomposition in (1) re-
mains exact. To obtain information aboutp(x|s1) for all x ∈ X ,
a function version of (2) is required. However, to perform a fac-
torization similar to (4), a matrix formulation is required. First,
consider a finite sample set̃X = [x(1), x(2), . . . , x(m)], which in
some sense coversX . This can be achieved by increasingm to
reach a desirable accuracy of coveringX . Using this approach,
the LHS of (1) can be evaluated over the gridX̃ × X̃ as

Q(x(i), x(j)) =
∑

s1,s2

p(x(i)|s1)S(s1, s2)p(x(j)|s2), (6)

to produce the desired matrix formulation. We are interested in a
solution that will providep(x|s) for all x ∈ X . This requires an



interpolation ofp(x|s) to values other thanx(1), x(2), . . . , x(m).
To this end, we consider reformulating the problem using a kernel
density estimate ofp(x|s):

p(x|s) =
n

∑

k=1

αksK(x, xk), (7)

whereαks are non-negative coefficientsαks ≥ 0 that sum to one
∑

k
αks = 1 for all s andK(x, y) is the kernel of the density

estimator. A wide variety of kernels can be deployed [7]. We
restrict the kernel to satisfy the following properties

1. Non-negativityK(x, y) ≥ 0,
2. SymmetryK(x, y) = K(y, x),
3. Sum-to-one

∫

X
K(x, y)dx = 1,

4. First order moment
∫

X
xK(x, y)dx = y, and

5. Bandwidth
∫

X
‖x − y‖2K(x, y)dxdy = σ2d,

whered is the dimensionality of the observations. Bandwidth se-
lection can be made to balance bias and variance in the density
estimator as in [8]. Next, we consider the kernel density estimator
of Q(x, x′) of the form

Q̂(x, x′) =
1

n − 1

n−1
∑

k=1

K(x, xk)K(x′, xk+1). (8)

Using the kernel estimate ofQ in (8) and the kernel representation
of p(x|s) as in (7), we introduce a kernelized version of (6):

1

n − 1

n−1
∑

k=1

K(x(i), xk)K(x(j), xk+1) =

∑

s1,s2

(

n
∑

k1=1

αk1s1
K(x(i), xk1

)S(s1, s2)

n
∑

k2=1

αk2s2
K(x(j), xk2

)
)

.

The matrix notation of the above equation is

Q̂ =
1

n − 1
KDKT = KASAT KT , (9)

whereKik = K(x(i), xk), Dkl = δk+1,l, andAks = αks. Here,
Q̂, K, A andS arem×m, m×n, n×L andL×L matrices, re-
spectively. Note that (9) is a set ofm2 equations with a number of
parametersnL + L2 and a number of constraintsL + 1. A neces-
sary condition for a unique solution is thatm2 ≥ nL+L2−L−1.
For a large number of samplesn, we can choosem to be of the or-
der of

√
nL to satisfy this inequality. Choosing̃X = X yields

n2 equations, which leads to a ratio of equations to parameters of
the order of n

L
. For largen, this ratio could potentially lead to

a more accurate estimation. Alternatively, a computationally effi-
cient choice ofX̃ can be made by sub-samplingX so thatm is
of the order of

√
nL thus leading to a number of equations, which

is linear in the number of pointsn trading-off estimation accuracy
with computational complexity.

We choose the nonlinear least-squares criterion for estimating
A andS based on the following optimization problem:

min
A∈Rn×L

S∈RL×L

‖Q̂ − KASAT KT ‖2

subject to 1T A = 1T , 1T S1 = 1, A ≥ 0, S ≥ 0. (10)

In the discrete case, the problem in (4) did not depend onn. How-
ever, in the continuous case, the problem described in (10) implic-
itly depends onn throughm. The choice ofm presents a trade-off
between computational complexity and accuracy of estimation.

3. ALGORITHMS

In this section, we present algorithms to solve the optimization
problems described in (4) and (10). To solve the problem in (4),
we propose an approach motivated by NNMF. NNMF is a well
studied problem and is a popular approach when the factor repre-
sentations need to be non-negative. Two popular algorithms for
NNMF are alternating least squares and multiplicative update al-
gorithm. We refer the reader to [3] for more details regarding
NNMF. For a discussion about the convergence properties of al-
ternating least squares, we refer to [9]. Note that the problem in
(4) is not a straightforward NNMF since the optimization function
involves fourth order terms inP .

Following the approach of alternating non negative least squares
for NNMF, we propose the following iterative algorithm. We ini-
tialize P̂ to lie in the column space of̂Q. We find the least squares
solution forS given bySLS = P̂ †Q̂P̂ †T whereP̂ † denotes the
pseudo-inverse of̂P . Next, we projectSLS onto the positive quad-
rant,S1 = S+

LS = max(SLS , 0) and then impose the sum-to-one
constraint usinĝS = S1/(1T S11). Next, we updatêP by solv-
ing for Q̂ = P̂oldSP T where P̂old denotes the previous value
of P̂ and is treated as a constant. We find the least squares so-
lution for P and then project it onto the positive quadrant i.e.,
P1 = max(((P̂ Ŝ)†Q̂)T , 0). Next, we updateP̂ by normaliz-
ing each column ofP1. Next, we updatêS again using the new
P̂ . Finally, we updateP̂ again by solving forQ̂ = PSP̂ T

old us-
ing a similar approach to that used for solvinĝQ = P̂oldSP T .
The complete pseudo code for the discrete version of the NNMF-
HMM algorithm is shown in Algorithm 1. A complete proof of
convergence for Algorithm 1 is beyond the scope of this paper.

Algorithm 1 NNMF-HMM Discrete case

Construct matrixQ̂ by (3)
Initialize P̂ to be in column space of̂Q
repeat

S1 = max(P̂ †Q̂P̂ †T , 0)

Normalize:Ŝ = S1/(1T S11)

P1 = max(((P̂ Ŝ)†Q̂)T , 0)

Normalize:P̂ij = P1ij/(
∑

i P1ij)

S1 = max(P̂ †Q̂P̂ †T , 0)

Normalize:Ŝ = S1/(1T S11)

P2 = max(((P̂ ŜT )†Q̂T )T , 0)

Normalize:P̂ij = P2ij/(
∑

i P2ij)

until ‖Q̂ − P̂ ŜP̂ T ‖2 has converged

To solve the problem in (10), we use the following algorithm.
We first compute them × n matrix K by evaluating the value of
kernel atm input points. As with the discrete case, we propose an
alternating least squares approach following the same cycle of es-
timation. HereK is incorporated in the least squares (LS) estima-
tion of A andS. We use non-negative least squares (NNLS) pro-
cedure for solvingA andS. The pseudo code for the continuous
version of the NNMF-HMM algorithm is shown in Algorithm 2.

4. NUMERICAL RESULTS

In this section, we present a toy example for each of the scenarios,
i.e., discrete observations and continuous observations.



Algorithm 2 NNMF-HMM Continuous case
Estimate kernel bandwidthσ.
Computem = ⌈

√
nL + L2⌉ and evaluate the kernel matrixK

atm input points
Construct them × m matrix Q̂ according to (8)
Initialize Â
repeat

Solve using NNLS:S1 = minS>0 ‖Q̂ − KÂSÂT KT ‖2

Normalize:Ŝ = S1/(1T S11)

Solve using NNLS:A1 = minA>0 ‖Q̂ − KASÂT
oldKT ‖2

Normalize:Âij = A1ij/(
∑

i
A1ij)

Solve using NNLS:S1 = minS>0 ‖Q̂ − KÂSÂT KT ‖2

Normalize:Ŝ = S1/(1T S11)

Solve using NNLS:A2 = minA>0 ‖Q̂−KÂoldSAT KT ‖2

Normalize:Âij = A2ij/(
∑

i
A2ij)

until ‖Q̂ − KÂŜÂT K‖2 has converged

4.1. Discrete Observations

We tested the performance of the proposed algorithm using a toy
example. We considered a HMM withL = 3 states. We used the
following transition matrix

[S(s2|s1)] =





0 0.9 0.1
0 0 1
1 0 0



 (11)

to produces(i + 1) = s2 given s(i) = s1. To produce the ob-
servations, we first createdx′ according to the conditional model
given byx′|s = 1 ∼ N (11, 2), x′|s = 2 ∼ N (16, 3), x′|s =
3 ∼ U [16, 26]. Then, we generatedx by roundingx′ to the nearest
integer. Following this model, we generated the data for different
values ofn, n = 103, n = 104 andn = 105 observations. The
joint probability of two consecutive observationsQ(x1, x2) is then
formed by (3) and Algorithm 1 described in Section 3 was applied
to estimateP (x|s) andS(s1, s2). The convergence criterion used
was that the absolute difference between the current value of the
error (given by‖Q̂ − P̂ ŜP̂ T ‖2) and the previous value of error
should be less than10−5. Since the NNMF-HMM algorithm con-
verges to local optimum, we repeat the procedure with 5 random
initializations and use the solution with the highest log likelihood.
For each value ofn (the number of samples), we generate the data
10 times and obtain10 independent estimates ofP (x|s) presented
in Figures 2(a), 2(b) and 2(c). We observe that

• Despite the overlap between the supports of the probabil-
ity models for the observations, the estimator was able to
extractP (x|s) in areas of overlap.

• Despite the non-Gaussian nature ofP (x|s = 3), it was
estimated consistently.

• As n increases, the estimates concentrate around the true
value ofP (x|s).

4.2. Comparison to Baum-Welch algorithm - Discrete case

In this section, we present both qualitative and quantitative com-
parisons of the proposed approach to the Baum Welch algorithm.
For qualitative comparison, we provide thêP (x|s) estimates ob-
tained by the two methods. For quantitative evaluation, we com-
pare the log likelihood, Hellinger distance of̂P (x|s) to the true

P (x|s) and the runtime of NNMF and HMM for different values
of the number of samplesn. For details regarding the Baum-Welch
algorithm, we refer the reader to [1]. We used the Matlab imple-
mentation of the Baum Welch algorithm available in Matlab-HMM
toolbox [10] for all of our simulations.

The NNMF-HMM procedure is the same as that described in
Section 4.1. Similar to NNMF, we repeat the Baum-Welch proce-
dure with 5 random initializations and pick the solution with the
highest log likelihood. We set the ‘thresh’ criterion in the HMM
toolbox as10−5 and limit the maximum number of Baum Welch
iterations to 500. Similar to Section 4.1, we obtain 10 different
estimates for each value ofn. Comparing Figures 2(a), 2(b) and
2(c) to Figures 2(d), 2(e) and 2(f), we observe that the estimates
of P (x|s) obtained by NNMF-HMM procedure are comparable to
the estimates obtained using Baum-Welch algorithm.

Next, we provide quantitative comparisons. First, we com-
pare the total run time (includes the time for each of the 5 random
initializations) of Baum-Welch and NNMF-based approach as a
function ofn, the number of samples. For each fixed value ofn,
we generate 10 independent realizations of the data and compute
the mean of the 10 values of the total runtime. We also compare
the log-likelihood and the Hellinger distance to the trueP (x|s)
for the two methods. Similar to the runtime, we report the mean
values of log likelihood and Hellinger distance across 10 indepen-
dent datasets for each value ofn. The total Hellinger distance was
computed asdtotal

H =
∑L

i=1 dH(P (x|s = i), P̂ (x|s = i)), where

d2
H(p, q) =

1

2

M
∑

j=1

(
√

pj −√
qj)

2.

The results are shown in Fig. 3. We observe that the NNMF-HMM
is about two orders of magnitude faster than Baum-Welch algo-
rithm, while providing comparable values of log-likelihood. The
Hellinger distance of NNMF-HMM procedure is higher compared
to Baum-Welch since NNMF-HMM optimizes least squares cri-
terion instead of maximum likelihood. We note that alternative
formulations of NNMF-HMM such as (5) can be potentially used
to obtain lower values of Hellinger distances.

The complexity of Baum-Welch algorithm isO(I1L
2n) where

I1 is the number of iterations required for the Baum-Welch pro-
cedure to converge. The computational complexity of each iter-
ation of the Baum-Welch algorithm is quadratic inL, the num-
ber of states, and linear inn, the length of the data sequence. In
the NNMF-HMM procedure, the creation of̂Q matrix involves
anO(n) operation. Each iteration of NNMF-HMM algorithm re-
quires inversion ofM × L matrix, which takesO(M2L + L3).
Usually L ≪ M and hence, the total complexity of our method
is O(n + I2(M

2L)) whereI2 is the number of iterations required
by the NNMF-HMM procedure. Ifn ≫ M2L, the complexity of
our method is justO(n), whereas the Baum-Welch procedure has
complexityO(I1L

2n), which indicates that our method is roughly
O(I1L

2) times faster than Baum-Welch. Ifn ≫ M , our method
is more than an order of magnitude faster than the Baum-Welch
procedure as shown in Fig. 3(a). We note that the NNMF-HMM
procedure can also be used as a good initialization procedure to
reduceI1, the number of Baum-Welch iterations.

4.3. Continuous observations

To evaluate the continuous observations estimator in Section 2.2,
we generated data using the same setup as in Section 4.1, but omit-
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Fig. 2. Comparison of NNMF-HMM and Baum Welch - Discrete case. Each graph contains 10 different estimates ofP (x|s) along with
the trueP (x|s) distribution.
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Fig. 3. Comparison of NNMF-HMM to Baum-Welch algorithm for the discrete observations case a) Run time, b) Log-likelihood and c)
Hellinger distance to originalP (x|s).
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(b) Baum Welch for HMM-GMM

Fig. 4. Comparison of NNMF-HMM to Baum-Welch algorithm
for the continuous case:̂p(x|s) for n = 5000. Each figure con-
tains 10 different estimates ofp(x|s).

ted the rounding ofx′ to the nearest integer. We considered the
Gaussian kernel and used the ML bandwidth estimator [8]. We
usedn = 5000 andm = ⌈

√
nL + L2⌉ = 123. For obtaining

the NNLS solution in Algorithm 2, we used projected Landweber
iterations. As before, we repeated the procedure10 times to pro-
duce10 independent estimates ofp(x|s), which are presented in
Fig. 4(a). We observe that, as in the discrete case, the estimator
was able to extractp(x|s) even in areas where the distributions
overlap.

4.4. Comparison to Baum-Welch algorithm - Continuous case

To compare the performance of NNMF-HMM to Baum-Welch for
the continuous case, we consider the HMM with mixture of Gaus-
sians outputs in the HMM toolbox [10] i.e. we fit a GMM for
each of thep(x|s). Due to the computationally intensive nature of
the continuous case, we just present qualitative results for one of
the settings. We generated data as described in Section. 4.3. We
fixed the number of mixture components to bem = 123. Since
the Baum-Welch algorithm can only approximate the solution (us-
ing a Gaussian mixture to approximate the uniform distribution),
we allow it to use a comparable number of mixture components
as with the NNMF-HMM algorithm. As before, we generate the
data 10 times and obtain 10 different estimates ofp(x|s). The 10
estimates forP (x|s = i) with i = 1, 2, 3 for the NNMF-HMM
algorithm are presented in Fig. 4(a) and for the Baum Welch al-
gorithm in Fig. 4(b). Comparing the two figures in Fig. 4, we can
observe that the estimates produced by NNMF-HMM follow the

original distributions more accurately, especially for the uniform
distribution.

5. CONCLUSION

We presented a novel algorithm for estimating the parameters of
an HMM through the application of NNMF to the joint proba-
bility distribution of two consecutive observations. Specifically,
we presented a solution for the discrete observation model and
extended the results to continuous observation through the non-
parametric approach using kernel density estimation. For the dis-
crete case, we showed that our algorithm can be significantly faster
than the Baum-Welch algorithm while providing comparable val-
ues of log-likelihood. For the continuous case, we showed that our
algorithm can produce more accurate solutions for non-Gaussian
densities. The simplicity and computational efficiency of the al-
gorithm makes it attractive both as an alternative to existing al-
gorithms (such as the Baum-Welch algorithm) and as a possible
initialization method to more accurate but cumbersome methods.
Future work will explore the application of these algorithms to real
world datasets.
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