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Abstract

Mixup (Zhang et al., 2017) is a recently proposed
method for training deep neural networks where
additional samples are generated during training
by convexly combining random pairs of images
and their associated labels. While simple to imple-
ment, it has shown to be a surprisingly effective
method of data augmentation for image classifi-
cation; DNNs trained with mixup show notice-
able gains in classification performance on a num-
ber of image classification benchmarks. In this
work, we discuss a hitherto untouched aspect of
mixup training – the calibration and predictive
uncertainty of the resulting models. We find that
DNNs trained with mixup are significantly bet-
ter calibrated – i.e the predicted softmax scores
are much better indicators of the actual likelihood
of a correct prediction – than DNNs trained in
the regular fashion. We conduct experiments on
a number of datasets and architectures – includ-
ing large-scale datasets like ImageNet – and find
this to be the case. We also find improved cal-
ibration on NLP datasets for text classification.
Additionally, we find that merely mixing features
does not result in the same calibration benefit and
that the label smoothing in mixup training plays
a significant role in improving calibration. Fi-
nally, we also observe that mixup-trained DNNs
are less prone to over-confident predictions on
out-of-distribution and random-noise data. We
conclude that the typical overconfidence seen in
neural networks, even on in-distribution data is
likely a consequence of training with hard labels,
suggesting that mixup training be employed for
classification tasks where predictive uncertainty
is a significant concern.
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1. Introduction: Overconfidence and
Uncertainty in Deep Learning

Machine learning algorithms are replacing or expected to in-
creasingly replace humans in decision-making pipelines.
With the deployment of AI-based systems in high risk
fields such as medical diagnosis (Miotto et al., 2016), au-
tonomous vehicle control (Levinson et al., 2011) and the
legal sector (Berk, 2017), the major challenges of the up-
coming era are thus going to be in issues of uncertainty
and trust-worthiness of a classifier. With deep neural net-
works (DNNs) having established supremacy in many pat-
tern recognition tasks, it is the predictive uncertainty of
these types of classifiers that will be of increasing impor-
tance. A DNN must not only be accurate, but also indicate
when it is likely to get the wrong answer. In other words, the
confidence of the DNN must be well calibrated, where the
predicted softmax scores should be indicative of the actual
likelihood of correctness. The issue of calibration in modern
DNNs was examined in (Guo et al., 2017) where the au-
thors show significant empirical evidence that modern deep
neural networks are poorly calibrated, with depth, weight
decay and batch normalization all influencing calibration.
Modern architectures, it turns out, are prone to overconfi-
dence, meaning accuracy is likely to be lower than what is
indicated by the predictive score.

This phenomenon of overconfidence has been observed in
a wide variety of deep architectures. Figure 1 shows a se-
ries of joint density plots of the average winning score and
accuracy of a VGG-16 (Simonyan & Zisserman, 2014) net-
work over the CIFAR-100 (Krizhevsky & Hinton, 2009)
validation set, plotted at different epochs. Both the confi-
dence (captured by the winning score) as well as accuracy
start out low and gradually increase as the network learns.
However, what is interesting – and concerning – is that the
confidence always leads accuracy in the later stages of train-
ing. Towards the end of training, accuracy saturates while
confidence continues to improve resulting in a very sharply
peaked distribution of winning scores. One of the contribut-
ing factors to the above phenomenon is the fact that the
training signal – the one-hot encoded labels in supervised
learning, that have all the probability mass in one class – are
zero-entropy distributions that admit no uncertainty about
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Figure 1. Joint density plot of accuracy vs confidence (captured by the winning softmax score) on the CIFAR-100 validation set at different
training epochs for the VGG-16 deep neural network. Top Row: In regular training, the DNN moves from underconfidence, at the
beginning of training, to overconfidence at the end. A well-calibrated classifier would have most of the density lying on the x = y gray
line. Bottom Row: Training with mixup on the same architecture and dataset. At corresponding epochs, the network is much better
calibrated.

the input. The DNN is thus, in some sense, trained to be-
come overconfident. Hence a worthwhile line of exploration
is whether principled approaches to label smoothing can
somehow temper overconfidence. In this work, we carry
out such an exploration by investigating the effect of the
recently proposed mixup (Zhang et al., 2017) method of
training deep neural networks. In mixup, additional syn-
thetic samples are generated during training by convexly
combining random pairs of images and, imporantly, their la-
bels as well. While simple to implement, it has shown to be
a surprisingly effective method of data augmentation: DNNs
trained with mixup show noticeable gains in classification
performance on a number of image classification bench-
marks. However neither the original work or subsequent
extensions to mixup (Verma et al., 2018; Guo et al., 2018;
Liang et al., 2018) have explored the effect of mixup on
predictive uncertainty and DNN calibration; this is precisely
what we aim to do in this paper.

Our findings are as follows: mixup trained DNNs are sig-
nificantly more well calibrated – i.e., the predicted softmax
scores are much better indicators of the actual likelihood
of a correct prediction – than DNNs trained without mixup
(see Figure 1 bottom row for an example). We also observe
that merely mixing features does not result in the same
calibration benefit and that the label smoothing in mixup
training plays a significant role in improving calibration.
Further, we also observe that mixup-trained DNNs are less
prone to over-confident predictions on out-of-distribution
and random-noise data. We discuss details in the following
sections.

2. An Overview of Mixup Training
Mixup training (Zhang et al., 2017) is based on the principle
of Vicinal Risk Minimization (Chapelle et al., 2001)(VRM):
the classifier is trained not only on the training data, but also
in the vicinity of each training sample. The vicinal points are
generated according to the following simple rule introduced
in (Zhang et al., 2017):

x̃ = �xi + (1� �)xj

ỹ = �yi + (1� �)yj

where xi and xj are two randomly sampled input points,
and yi and yj are their associated one-hot encoded labels
(more details on mixup training are given in the appendix in
Section A). Training this way not only augments the feature
set X̃ , but the induced set of soft-labels also encourages
the strength of the classification regions to vary linearly
between samples. The experiments in (Zhang et al., 2017)
and related work in (Inoue, 2018; Verma et al., 2018; Guo
et al., 2018) show noticeable performance gains in various
image classification tasks. The linear interpolator � 2 [0, 1]
that determines the mixing ratio is drawn from a symmetric
Beta distribution, Beta(↵,↵);see section A of the appendix
for more details. In this work, we also look at the effect of
↵ on calibration performance.

3. Experiments
We perform numerous experiments to analyze the effect of
mixup training on the calibration of the resulting trained
classifiers. We use the following datasets in our exper-
iments: STL-10 (Coates et al., 2011), CIFAR-10 and
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Figure 2. Calibration results for mixup and base-case on various image datasets and architectures. Top Row: Scatterplots for accuracy
and confidence for STL-10(a,b) and CIFAR-100(c,d). The mixup case is much better calibrated with the points lying closer to the x = y

line, while in the base case, points tend to lie in the overconfident region. Bottom Row: Expected Calibration Error (e) and Overconfidence
error (f) on various architectures. Experiments suggest best ECE is achieved in the [0.2,0.4] range for ↵(g), while overconfidence error
decreases monotonically with ↵ due to underfitting (h).

CIFAR-100 (Krizhevsky & Hinton, 2009) and Fashion-
MNIST (Xiao et al., 2017). Additional details regarding
experimental setup are given in the appendix. We measure
the calibration of the network using the Expected Calibra-
tion Error (as described in (Guo et al., 2017)), and also
introduced an additional Overconfidence Penalty metric;
see appendix for details. In this work we only apply mixup
to pairs of images as done in (Zhang et al., 2017); all exper-
iments were done using the mixup authors’ code available
at (Zhang).

3.1. Results

Results on the various datasets and architectures are shown
in Figure 2. While the performance gain in validation accu-
racy (not shown) was generally consistent with the results
reported in (Zhang et al., 2017), it is the effects on net-
work calibration that we focus here. The top row shows a
calibration scatter plot for STL-10 and CIFAR-100, high-
lighting the effect of mixup training. In a well calibrated
model, where the confidence matches the accuracy most of
the points will be on x = y line. We see that in the base case,
both for STL-10 and CIFAR-100, most of the points tend
to lie in the overconfident region. The mixup case is much
better calibrated, noticeably in the high-confidence regions.

In the bottom row, we compare the effect on ECE for both
mixup and the case where we only mix features to tease
out the effect of label mixing. As we see, merely mixing
features does not generally provide the calibration benefits
seen in the full-mixup case suggesting that the point-mass
distributions in hard-coded labels are contributing factors to
overconfidence. We also show the effect on ECE as we vary
the hyperparameter ↵ of the mixing parameter distribution.
For very low values of ↵, the behavior is similar to the base
case (as expected), but ECE also noticeably worsens for
higher values of ↵ due to the model being under-confident.
Overconfidence alone decreases monotonically as we in-
crease ↵ as shown in Figure 2h

3.1.1. LARGE-SCALE EXPERIMENTS ON IMAGENET

Here we report the results of calibration metrics resulting
form mixup training on the 1000-class version of the Im-
ageNet (Deng et al., 2009) data comprising of over 1.2
million images. One of the advantages of mixup and its
implementation is that it adds very little overhead to the
training time, and thus can be easily applied to large scale
datasets like ImageNet. We perform distributed parallel
training on the ResNext-101 (32x4d) (Xie et al., 2017) archi-
tecture using the synchronous version of stochastic gradient
descent and train till 93% accuracy is reached over the top-5
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predictions. The results are shown in Figure 3. The cali-
bration scatter-plot suggests that mixup training provides
noticeable benefits even in the large-data scenario, where
the models should be less prone to over-fitting. We also
observed that the mixup model also achieved a consistently
higher classification performance of ⇡ 0.4 percent over
the other methods.

Additional results on NLP datasets are given in the appendix.

Figure 3. Calibration on ImageNet for ResNext 101

3.1.2. TESTING ON OUT-OF-DISTRIBUTION AND
RANDOM DATA

In this section, we explore the effect of mixup training
when predicting on samples from unseen classes (out-of-
distribution) and random noise images. We first train a
VGG-16 network on in-distribution data (STL-10) and then
predict on classes not seen in training sampled from the
ImageNet dataset. For the random noise images, we test on
gaussian random noise with the same mean and variance as
the training set. We compare the performance of a mixup-
trained model with that of the baseline, as well as a temper-
ature calibrated per-trained baseline as described in (Guo
et al., 2017). We also compare the prediction uncertainty
using the Montecarlo dropout method described in (Gal &
Ghahramani, 2016) where multiple forward passes using
dropout are made during test-time. We average predictions
over 10 runs.

The distribution over prediction scores for out-of-
distribution and random data for mixup and comparison
methods are shown in Figure 4. The differences versus
the baseline are striking; in both cases, the mixup DNN is
noticeably less confident than its non-mixup counterpart,
with the score distribution being nearly perfectly separa-
ble in the random noise case. Temperature scaling is a
post-training calibration method and we expect it to be well
calibrated on real images, and indeed we see that temper-
ature scaling is more conservative than mixup on real but
out-of-sample data. However, it is noticeably more overcon-
fident than mixup in the random-noise case. Further, mixup

Figure 4. Behavior of mixup training vs base-case on out-of-
distribution (left) and random noise images(right). Model trained
on STL-10 images and tested on out-of-category classes from
Imagenet and gaussian random noise.

also performs significantly better than MC-dropout in both
cases. The results here suggest that the effect of training
with interpolated samples and the resulting label smoothing
tempers over-confidence in regions away from the training
data. While these experiments were limited to two datasets
and one architecture, the results indicate that training by
minimizing vicinal risk can be an effective way to enhance
reliability of predictions in DNNs.

4. Conclusions
We presented results on an unexplored area of mixup based
training – its effect on DNN calibration and predictive uncer-
tainty. Existing empirical work has conclusively shown the
benefits of mixup for boosting classification performance;
in this work, we show an additional important benefit –
mixup trained networks turn out to be better calibrated and
provide more reliable estimates both for in-sample and out-
of-sample data (being under-confident in the latter case).
There are possibly multiple reasons for this: the data aug-
mentation provided by mixup is a form of regularization
that prevents over-fitting and memorization, tempering over-
confidence in the process. The label smoothing resulting
from mixup might be viewed as a form of entropic regular-
ization on the training signals, again preventing the DNN
from driving the training error to zero. Recent work (Verma
et al., 2018) has shown how the classification regions in
mixup are smoother, without sudden jumps from one high
confidence region to the other suggesting that the lack of
sharp boundary transitions in classification regions play an
important role in producing well-calibrated classifiers. In-
deed, the classification performance boost coupled with the
well-calibrated nature of mixup trained DNNs as studied in
this paper suggest that mixup based training be employed
in situations where predictive uncertainty is a significant
concern.
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Appendix A Details of Mixup Training

Mixup training [16] is based on the principle of Vicinal Risk Minimization [3](VRM):
the classifier is trained not only on the training data, but also in the vicinity of
each training sample. The vicinal points are generated according to the following
simple rule introduced in [16]:

x̃ = �xi + (1� �)xj

ỹ = �yi + (1� �)yj

where xi and xj are two randomly sampled input points, and yi and yj are their
associated one-hot encoded labels. This has the effect of the empirical Dirac
delta distribution

P�(x, y) =
1

n

nX

i

�(x = xi, y = yi)

centered at (xi, yi) being replaced with the empirical vicinal distribution

P⌫(x̃, ỹ) =
1

n

nX

i

⌫(x̃, ỹ|xi, yi)

The vicinal samples (x̃, ỹ) are generated as above, and during training minimiza-
tion is performed on the empirical vicinal risk:

R⌫(f) =
1

m

mX

i=1

L(f(x̃i), ỹi)

where L is the standard cross-entropy loss, but calculated on the soft-labels
ỹi instead of hard labels. Training this way not only augments the feature
set ˜

X, but the induced set of soft-labels also encourages the strength of the
classification regions to vary linearly betweens samples. The experiments in [16]
and related work in [7, 14, 4] show noticeable performance gains in various
image classification tasks.

(a) (b) (c) (d)

Figure 1: Entropy distribution of training labels as a function of the ↵ parameter
of the Beta(↵,↵) distribution from which the mixing parameter is sampled.

The linear interpolator � 2 [0, 1] that determines the mixing ratio is drawn
from a symmetric Beta distribution, Beta(↵,↵), where ↵ is the hyper-parameter

1



that controls the strength of the interpolation between pairs of images and
the associated smoothing of the training labels. ↵ = 0 recovers the base case
corresponding to zero-entropy training labels (one-hot encodings, in which case
the resulting image is either just xi or xj), while a high value of ↵ ends up in
always averaging the inputs and labels. The authors in [16] remark that values
of ↵ 2 [0.1, 0.4] gave the best performing results for classification, while high
values of ↵ resulted in significant under-fitting. As we saw in our experiments,
the choice of ↵ also has an important effect on resulting calibration of the trained
DNNs.

Appendix B Experimental Setup

For STL-10, we use the VGG-16 [13] network. CIFAR-10 and CIFAR-100
experiments were carried out on VGG-16 as well as ResNet-34 models. For
Fashion-MNIST, we used a ResNet-18 model. For all experiments, we use batch
normalization, weight decay of 5⇥ 10

�4, trained the network using SGD with
Nesterov momentum, training for 200 epochs with an initial learning rate of 0.1
halved at 2 at 60,120 and 160 epochs. Unless otherwise noted, calibration results
are reported for the best performing epoch on the validation set.

For the ImageNet experiments, we perform distributed parallel training using
the synchronous version of stochastic gradient descent. We use the ImageNet
training code from [1], which uses a cyclical learning rate and progressive resizing
of images for faster training times. We train on a 32-GPU cluster using the
ResNext-101 (32x4d) [15] architecture and train till 93% accuracy is reached
over the top-5 predictions.

Appendix C Calibration Metrics

Softmax predictions are grouped into M interval bins of equal size. Let Bm be
the set of samples whose prediction scores (the winning softmax score) fall into
bin Bm. The accuracy and confidence of Bm are defined as

acc(Bm) =

1

|Bm|
X

iinBm

1(ŷi = yi)

conf(Bm) =

1

|Bm|
X

iinBm

p̂i

where p̂i is the confidence (winning score) of sample i. The Expected Calibra-
tion Error (ECE) is then defined as:

ECE =

MX

m=1

|Bm|
n

����acc(Bm)� conf(Bm)

����

In high-risk applications, confident but wrong predictions can be especially harm-
ful; thus we also define an additional calibration metric – the Overconfidence
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Error (OE)– as follows

OE =

MX

m=1

|Bm|
n

h
conf(Bm)⇥max

⇣
conf(Bm)� acc(Bm), 0

⌘i

This penalizes predictions by the weight of the confidence but only when confi-
dence exceeds accuracy; thus overconfident bins incur a high penalty.

Appendix D Prediction Confidence of Mixup

(a) (b) (c)

Figure 2: Distribution of winning scores

As we have seen, mixup trained models are less overconfident than their
non-mixup counterparts. Here we show the distribution of the winning scores for
various image datasets. As shown, mixup models are less peaked in the very-high
confidence region.

Appendix E Experiments on NLP Data

While mixup was originally suggested as a method to mostly improve performance
on vision classification tasks, here we explore the effect of mixup training in
the NLP domain. Very recent work[5] has shown classification performance
benefits in the NLP domain though this has been a relatively under-explored
area for mixup training. Note that a straight-forward mixing of inputs (as in
pixel-mixing in images) will generally produce nonsense input since the semantics
are unclear. To avoid this, we modify the mixup strategy to perform mixup
on the embeddings layer rather than directly on the input documents. For our
experiments, we employ mixup on NLP data for text classification using the
following three datasets:

1. MR [11]: Movie reviews with two classes, documents are split into train/test
sets of 9596/1066.

2. TREC [9]: Question dataset, where the classification involves identifying
six classes. The dataset is divided into 5452/500 documents for train/test
splits.

3



3. IMDB [10]: Binary classification with movie reviews split into train/test
sets of- 25000/25000

(a) (b) (c)

Figure 3

We train CNN for sentence classification (Sentence-level CNN) [8], where
we initialize all the words with pre-trained GloVe [12] embeddings, which are
modified while training on each dataset. For the remaining parameters, we use the
values suggested in [8]. We refrain from training the most recent NLP models [6,
2, 17], since our aim here is not to show state-of-art classification performance on
these datasets, but to study the effect on calibration. Also, the design of the more
recent NLP models makes embedding mixup less straightforward. Nevertheless,
the performance benefits on calibration, shown in Figure 3 are evident where
mixup provides noticeable gains for all datasets, both in terms of calibration
and overconfidence.
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