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Abstract
Poisoning attacks have emerged as a significant
security threat to machine learning algorithms.
It has been demonstrated that adversaries who
make small changes to the training set, such as
adding specially crafted data points, can hurt the
performance of the output model. Most of these
attacks require the full knowledge of training data
or the underlying data distribution. In this paper
we study the power of oblivious adversaries who
do not have any information about the training set.
We first formalize the definitions related to vari-
ous aspects of such attacks. We then demonstrate
that such attacks, in general, are provably weaker
by showing a separation between full-information
and oblivious poisoning attacks in various set-
tings. Specifically, we show the existence of natu-
ral learning problems that are rather robust against
oblivious adversaries whose goal is to add a non-
relevant features to the model with certain poison-
ing budget. On the other hand, we prove that for
same problem setting, non-oblivious (full informa-
tion) adversaries with the same budget can craft
poisoning examples based on the rest of the train-
ing data and successfully hurt the performance.
Finally, we design and run experiments and ob-
serve that they validate our theoretical findings.

1. Introduction
Traditional approach to supervised machine learning focuses
on a benign setting; honestly sampled training data, perhaps
with random noise, is given to a learner that outputs a model
that will later get tested on the same data distribution used
during the learning phase. Due to the broad deployment of
learning algorithms in safety-critical applications, however,
recently machine learning has gone through a revolution
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of studying the same problem under so-called poisoning
attacks where there is an adversary who can interfere with
data sampling by changing a honestly sampled dataset S
into a close dataset S ′.

The central focus of this work is on understanding the power
of poisoning adversaries, when it comes to adversary’s in-
formation about the data set.

What does the adversary know about the data? Many
previous work on theoretical analysis of poisoning attacks
implicitly, or explicitly, assume that the adversary has full
knowledge of the training data S before choosing what ex-
amples to add or delete from S . For example, the adversary
in universal targeted data poisoning attacks of (Mahlouji-
far et al., 2019a; Mahloujifar & Mahmoody, 2019) which
is based on the (computational) concentration of measure
in product spaces, needs to start off by knowing the full
data set S and then select, one by one, whether or not to
change each particular example in S . Similarly, the attacks
described in work of (Koh et al., 2018), construct poisoning
datasets based on the knowledge of the “clean” training data.
This assumption about the “full information” about S given
to the poisoning adversary, however, is not realistic in all
scenarios, as adversary might not have access to all of the
data before deciding on what part of it to tamper with.

As a particular practical example where a poisoning adver-
sary might naturally have limited information about (most
of) training data, consider a federated (or any form of
distributed) learning system (McMahan & Ramage, 2017;
McMahan et al., 2016; Bonawitz et al., 2017; Konečnỳ et al.,
2016) between multiple hospitals who share their data with
a trusted server with the goal of training a shared model over
their aggregate data. Now one can imagine an adversary
who wants to participate in this system and inject malicious
data with the hope of degrading the quality of the trained
model. In such scenario, the adversary might only know the
examples that it would submit itself, and not the examples
submitted by other hospitals, given that they only share their
data with the trusted server. In this case, we are dealing with
an oblivious poisoning adversary.

Main question: how much stronger are full-information
attackers? Motivated by understanding the role of the
knowledge about the data set by a poisoning adversary, in
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this work, we directly study whether having full information
can help a poisoning attacker. Namely, we study whether
there is a learning task in which oblivious poisoning adver-
saries who might only know the trained model θ (but not the
entire training data S that has led to θ) are provably weaker
than full-information adversaries who know the entire data
set S (in addition to perhaps knowing the model θ).

A new motivation for data privacy. Privacy is often
viewed as a utility for data owners in the machine learn-
ing pipeline. Due to the trade-offs between privacy and the
utility of the users, data users sometimes ignore the privacy
of data owners while doing their analysis, specially when
they do not have any incentive to enforce the privacy. A pos-
itive answer to the main question posed above could create a
new motivation for keeping training dataset private. Specif-
ically, the users of data would try to keep training dataset
private, with the goal of securing their models against poi-
soning and increasing their utility in scenarios where part
of data is coming from potentially malicious sources.

1.1. Our Contribution

In this work, we initiate a formal study of the role of adver-
sary’s knowledge in poisoning attacks by comparing the two
attack models: traditional full information attacks vs. obliv-
ious attacks. In particular, we study the provable difference
that it makes when the adversary knows all of the training
data before launching the poisoning attack, called the full-
information threat model, in contrast to when the adversary
adds malicious data to the training set in an oblivious way.

Formalizing oblivious poisoning attacks. We start by for-
malizing what it means mathematically to be an oblivious
poisoning adversary. We present a comprehensive treatment
of the subject by separately studying the issues of how the
poisoning attack is done vs. what goals the attacker pursues.

After formalizing the concept of oblivious poisoning attacks,
we do a comparative study of the power of oblivious attack
vs. their full-information counterparts in both contexts of
feature selection as well as risk minimization.

Separations for feature selection tasks. We first prove our
separation between full-information and oblivious poisoning
adversarial models in the context of feature selection, and
specifically for a sparse linear regression problem. In a
feature selection problem, the learning algorithm wants to
discover the relevant features that determine the ground
truth function. For example, imagine a dataset of patients
with many features, who suffer from an specific disease
with different levels of severity. One can try to find the most
important features contributing to the severity of disease in
the context of feature selection. Specifically, the learners’
goal here is to recover a vector θ∗ ∈ Rp whose non-zero
coordinates determine the relevant features contributing to

the disease. In this scenario, the goal of the adversary is
to deceit the learning process and make it output a model
θ̂′ ∈ Rp with a different set of non-zero coordinates.

Separations for risk minimization tasks. Most poisoning
attacks in the literature deal with increasing the population
(or sometimes “targeted”) risk of a produced model θ̂. In
this work, we additionally prove some preliminary separa-
tion results in this context, proving further evidence that
oblivious attacks are provably less powerful compared to
their full-information counterparts for the task of learning
half spaces. See Section 3 for the formal statements and the
supplemental material for proofs.

Experiments. To empirically investigate the power of obliv-
ious and full-information attacks, we experiment on syn-
thetic and real world datasets. Our experiments confirm
our theoretical findings as they also show that the power of
oblivious and poisoning attacks differs significantly.

Related work. Due to space limitations, more related works
could be found in Appendix A.

Open question. In this work, we separate the power of two
extreme cases of adversaries. Oblivious adversaries that do
not know anything about the training set and adversaries
who know all the training set. An interesting open question
is to study the power of adversaries with partial knowledge
over the training set.

2. Oblivious vs. Full-information Poisoning:
Formally Defining Threat Models

In this section, we formally define the security games of
various learning systems under oblivious poisoning attacks.
It is common in cryptography to define security model based
on a game between an adversary and a challenger (Katz
& Lindell, 2007). Here, we use the same approach and
introduce game based definitions for oblivious and full-
information adversaries. We use some (of the standard)
notations that are reviewed in Appendix B.

In what follows, we give full security games for a feature se-
lection task. Later, in Section 3 we will see how to construct
problem instances (by defining their data distributions) that
provably separate the power of oblivious attacks from full-
information counterparts.

Definition 2.1 (Oblivious and full-information data injec-
tion poisoning for feature selection). We first describe the
data oblivious security game between a challenger C and
an adversary A, and the game is parameterized by adver-
sary’s budget k and the training data S = [X Y ] which is
a matrix X and a set of labels Y , and the feature selection
algorithm FtrSelector. The implicit assumption here is that
[X Y ] defines a true set of features Supp(θ) that can be
recovered using FtrSelector.
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OblFtrSel(k,S = [X Y ] ,FtrSelector).

1. Adversary A generates a poisoning dataset [X ′ Y ′] ∈
[−1, 1]k×(p+1) of size k.

2. A sends [X ′ Y ′] to C.
3. C recovers model θ̂ = FtrSelector([X Y ]).

4. C also recovers θ̂′ = FtrSelector

([
X Y

X ′ Y ′

])
.

5. Adversary wins if Supp(θ̂) 6= Supp(θ̂′).

In the full information security game, all the steps are the
same as above, except that in the beginning (as “zeroth”
step) the following is done.

FullFtrSel(k,S = [X Y ] ,FtrSelector).

• Step 0: C sends [X Y ] to A.
• The rest of the steps are the same as those of the game

OblFtrSel(k, [X Y ] ,FtrSelector).

We now give a formal security game to define the secu-
rity of learning tasks under (oblivious) poisoning, where
adversary’s goal is to increase the (population) risk of the
produced model. More formally, the goal of the adversary A
is simply to modify S into some S ′ that leads to producing
θ′ (instead of θ) with as large a population risk Risk(θ′) as
possible. Therefore, the game below will not have a zero-
one output, but rather it will have a real number as how
much the adversary wins.

Definition 2.2 (Oblivious and full-information data injec-
tion poisoning for population risk). We first describe the
data oblivious security game between a challenger C and
an adversary A, and then will describe how to modify it into
a full-information variant. Such game is parameterized by
adversary’s budget k, a data set S a learning algorithm L,
and a distribution D over X × Y (where X is the space of
inputs and Y is the space of outputs).1

OblRisk(k,S, L,D).

1. Adversary A generates k new examples (e′1, . . . , e
′
k)

and them to C.
2. C obtains S ′ by adding the injected examples to S.
3. C runs L over S ′ to obtain (poisoned) θ′ ← L(S ′).
4. A’s advantage (in winning the game) will be

Risk(θ′, D) = Pr(x,y)←D[θ′(x) 6= y].2

In the full information security game, all the steps are the
same as above, except the first step:

FullRisk(k,S, L,D).

• Step 0: C sends S to A.
• The rest of the steps are the same as those of the game

1Since we deal with risk, we need to add D as a new parameter
compared to the games of Definition 2.1.

2Note that this is a real number. More generally we can use
any loss function, which covers the case of regression as well.

OblRisk(k,S, L,D).

Explained above for Definition 2.1, one can also envision
variations of Definition 2.2 in which the goal of the attacker
is to increase the error on a particular instance (i.e., a tar-
geted poisoning (Barreno et al., 2006; Shen et al., 2016))
or use other poisoning methods that eliminate or substitute
poison data rather than just adding some.

3. Separating the Power of Oblivious and
Full-information Attacks

In this section, we will provably demonstrate that the power
of oblivious and full-information adversaries could signifi-
cantly differ. In particular, we study the power of poisoning
attacks in two contexts of feature selection and classification.
We focus on two important algorithms, Lasso Estimator for
Feature selection and Empirical Risk minimization for clas-
sification.

Separation for feature selection. We first prove the exis-
tence of a feature selection problem such that, with high
probability, it stays secure in the oblivious attack model of
Definition 2.1, while the same problem’s setting is highly
vulnerable to poisoning adversaries as defined in the full-
information threat model of Definition 2.1. We use Lasso
estimator for proving our separation result.

Recalling feature selection through Lasso estimator. We
work in the feature selection setting, and the exact format
of our problem is as follows. There is a target parameter
vector θ∗ ∈ (0, 1)p. We have a n × p matrix X (n vec-
tors, each of p features) and we have Y = X × θ∗ + W
where W itself is a small noise, and Y is the vector of noisy
observations about θ∗. Number of non-zero elements (de-
noting the actual relevant features) in θ∗ are bounded by
s namely, Supp(θ∗) ≤ s. For the setting of the problem
mentioned above, the Lasso Estimator tries to learn θ∗ by
optimizing the a penalized loss and obtain the solution θ̂
as θ̂ = argminθ∈(0,1)p

1
n · ‖Y −X × θ‖

2
2 + 2λ

n · ‖θ‖1.We
use Lasso([X Y ]) to denote θ̂, as learned by the Lasso op-
timization described above. We also use Risk(θ̂, [X Y ])
to denote the “scaled up” value of the Lasso’s objective

function Risk(θ̂, [X Y ]) =
∥∥∥Y −X × θ̂∥∥∥2

2
+ 2 ·λ ·

∥∥∥θ̂∥∥∥
1
.

Theorem 3.1. For any k, p ∈ N, there exist n ∈ N and
a dataset [X Y ] ∈ Rn×(p+1) such that if we randomly
shuffle the coordinates of X according to a permutation
π to get π(X) and uses the dataset [π(X) Y ] to run the
Lasso estimator. Then, the probability of winning for an
oblivious adversary in the security game of Definition 2.1 is
at most 2/p, namely, for all adversaries A we have

E
π←G

[
Adv

(
A,OblFtrSel(k, [π(X) Y ] , Lasso)

)]
≤ 2

p
.
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while a full-information adversary can win the security
game of Definition 2.1 with probability 1. Namely, there
exist adversary A such that

E
π←G

[
Adv

(
A,FullFtrSel(k, [π(X) Y ] , Lasso)

)]
= 1.

Separation for classification Now we also show a separa-
tion on the power of oblivious and full-information poison-
ing attacks on classification. In particular we show that em-
pirical risk minimization (ERM) algorithm could be much
more susceptible to full-information poisoning adversaries,
compared to oblivious adversaries.

Theorem 3.2. There is a distribution of distributions D
such that there is a data injecting adversary with budget
ε · n that wins the full-information security game for classi-
fication by advantage ε, namely there exists A such that

E
D←D
S←Dn

[
Adv

(
A,FullRisk(ε · n,S,ERM, D)

)]
≥ Ω(ε).

On the other hand, any adversary A has much smaller
advantage in the oblivious game. Namely,

E
D←D
S←Dn

[
Adv

(
A,OblRisk(ε · n,S,ERM, D)

)]
≤ O(ε2).

4. Experiments
In this section 3, we present experiment to show the power
of oblivious and full-information poisoning attacks. Below
are are some details about our experiments. For more details
we refer readers to Appendix 1.

Feature Selection. In Appendix E.1 we show an oblivious
attack with provable success for LASSO. Here we use that
attack to explore different features, to see how many poison
points we need to add each feature to the final model.

• Synthetic dataset. We empirically validate the claims
about Construction E.6 by instantiating it with a syn-
thetic dataset of n = 1000 rows and p = 100000
features.

• Real-world datasets. We use four datasets frequently
used in feature selection to explore the separation in
real world data: Boston, TOX, Protate GE, and SMK.

For all the datasets, we observe that there is a separation
between the average value of r across all the features and
the minimum value of r, exhibiting the existence of a few
unstable features. For instance, in the Boston dataset, the
1 (ZN) feature requires less than 40 poison rows to add it
to the dataset, while the average is around 120, and the 9
(TAX) feature requires about 170. Because an oblivious ad-
versary would not have information on what these unstable

3The code for our experiments can be fond at https://
github.com/essdeee/oblivious_poisoning.

Figure 1. Synthetic experiment and Boston experiment. We at-
tacked 20 randomly sampled features of our synthetic dataset and
all the features of the Boston dataset, represented by cyan bars.
The y-axis is r, the number of features needed to add the feature
to θ̂. The red horizontal line is the average of all r. Both datasets
have a significantly unstable feature, shown as the leftmost red
bar.

features are, while a non-oblivious adversary would, these
experiments show an empirical gap between the power of a
non-oblivious adversary and an oblivious one.

Classification. We design an experiment to empirically
validate the claim made in Theorem 3.2, that there is a
separation between oblivious and full-information poisoning
adversaries for classification. We setup the experiment just
as in the proof of Theorem 3.2, as follows.

First, we sample training points X = x1, x2, . . . xm for
m = 1, 000 from the Gaussian space N (0, 1)2, and pick a
random ground-truth halfspace w∗ from N (0, 1)2. Using
w∗, we find our labels y1, y2, . . . ym by taking (w∗)Txk
for k ∈ [m]. This ensures the data is linearly separable
by the homogeneous halfspace produced by w∗. Since we
are working in 2D settings, it is possible to implement the
ERM for this dataset. To attack this, we implement one

Figure 2. Oblivious and full-information poisoning separation in
classification. We plot the effect of each adversary’s attack on the
accuracy of our resulting poisoned ERM halfspace. See Appendix
H for the discription of the attacks.

full-information poisoning attack and three different attack
strategies for oblivious adversarys. We observe in Figure
2 that the full-information adversary can increase the error
linearly with ε using this strategy, while the oblivious ad-
versaries fail to have any consistent impact on the resulting
classifier’s error with their strategies.

https://github.com/essdeee/oblivious_poisoning
https://github.com/essdeee/oblivious_poisoning
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Supplementary Material

A. Related Work
As opposed to data poisoning setting, the question of adversary’s knowledge is previously studied in the line of work on
adversarial examples. In a test time evasion attack the adversary’s goal is to find an adversarial example, the adversary
knows the input x fully before trying to find a close input x′ (such that x′ ∼ x) that is misclassified. In that setting, the
question of adversary’s knowledge can be formed around whether or not it knows the model θ completely or it only has
a black-box access to it (Papernot et al., 2017). Note that, in our work, the model θ is known to the adversary, and the
information complexity of the attack focuses on whether or not the adversary is aware of the full training data.

Some previous work have studied poisoning attacks in the setting of federated/distributed learning (Bhagoji et al., 2019;
Mahloujifar et al., 2019b). Their attacks, however, either (implicitly) assume a full (or partial) information attacker, or aim
to increase the population risk (as opposed to injecting features in a feature selection task). Thus, our work is novel in both
formally studying the differences between full-information vs. oblivious attacks, and provably separating the power of these
two attack models in the contexts of feature selection as well as risk-minimization tasks. We note that Xiao et al. (2015) also
empirically examine the robustness of feature selection in the context of poisoning attacks, but their measure of stability is
across sets of features. We are distinct in a sense that our paper studies the effect of oblivious attacks on individual features
and with provable guarantees.

We also distinguish our work with another line of work that studies the computational complexity of the attacker (Mahloujifar
& Mahmoody, 2018; Garg et al., 2019). Here, we study the “information complexity” of the attack; namely, what information
the attacker needs to succeed in a poisoning attack, while those works study the computational resources that a poisoning
attacker needs to successfully degrade the quality of the learned model. Another recent exciting line of work that studies the
computational aspect of robust learning in poisoning contexts, focuses on the computational complexity of the learning
process itself (Diakonikolas et al., 2016; Lai et al., 2016; Charikar et al., 2017; Diakonikolas et al., 2017; 2018b;a; Prasad
et al., 2018; Diakonikolas et al., 2018c), and other works have studied the same question about the complexity of the learning
process for evasion attacks (Bubeck et al., 2018b;a; Degwekar & Vaikuntanathan, 2019). Furthermore, since we deal with
information complexity, our work is distinct from previous work that studies the impact of the training set (e.g., using clean
labels) on the success of poisoning (Shafahi et al., 2018; Zhu et al., 2019; Suciu et al., 2018; Turner et al., 2019).

Finally, we remark that online poisoning adversaries studied in (Mahloujifar & Mahmoody, 2017; Wang & Chaudhuri,
2018; Mahloujifar & Mahmoody, 2019), roughly speaking, is a form of attack that lies somewhere between oblivious and
full-information attacks. In their model, an online adversary needs to choose its decision about the ith example (i.e., to
tamper or not tamper it) based only on the history of the first i − 1 examples, and without the knowledge of the future
examples. So, their knowledge about the training data is limited, in a partial way. Since we separate the power of full
information vs. oblivious attacks, a corollary of our results is that at least one of these models is different from the online
variant for recovering sparse linear regression. In other words, we are in one of the following worlds: (i) online adversaries
are provably stronger than oblivious adversaries or (ii) full-information adversaries are provably stronger than online
adversaries.

B. Notation.
We first define some useful notation. For an arbitrary vector θ ∈ Rp we use Supp(θ) = {i : θi 6= 0}, we denote the
set of (indices of) its non-zero coordinates of θ ∈ Rp. We also use ‖θ‖2 and ‖θ‖ to denote the `2 and `1 norms of θ
respectively. For two matrices X ∈ Rn×p and Y ∈ Rn×1, we use [X Y ] ∈ Rn×(p+1) to denote a set of n regression
observations on feature vectors Xi∈[n] such that Yi is the real-valued observation for Xi. For two matrices X1 ∈ Rn1×p and

X2 ∈ Rn2×p, we use
[
X1

X2

]
∈ R(n1+n2)×p to denote the concatenation of X1 and X2. Similarly, for two set of observations

[X1 Y1] ∈ Rn1×(p+1) and [X2 Y2] ∈ Rn2×(p+1), we use
[
X1 Y1

X2 Y2

]
∈ R(n1+n2)×(p+1) to denote the concatenation of

[X1 Y1] and [X2 Y2]. For a security game G and an adversary A we use Adv(A,G) to refer to the advantage (the amount
of win) of adversary A in G.
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C. Further Details on Defining Oblivious Attacks
In this section, we discuss other definitional aspecstw of oblivious and full-information poisoning attacks.

C.1. Oblivious Variants of (Full-Information) Data Poisoning Attacks

In this section, we explain how to formalize oblivious poisoning attackers in general, and in the next subsection we will
describe how to instantiate this general approach for the case of feature selection.

A poisoning adversary of “budget” k, can tamper with a training sequence S = {e1, . . . , en}, by “modifying” S by at most
k changes. Such changes can be in three forms

• Injection. Adversary can inject k new examples e′1, . . . , e
′
k to S . This is without loss of generality when the learner is

symmetric and is not sensitive to the order in the training examples. More generally, when the training set is treated
like a sequence S = (e1, . . . , en), the adversary can even choose the location of these planted examples e′1, . . . , e

′
k.

More formally, the adversary picks k numbers 1 ≤ i1 < · · · < ik ≤ n + k, and constructs the new data sequence
S ′ = (e′′1 , . . . , e

′′
n+k) by letting e′′j = e′ij and letting S fill the remaining coordinates of S ′ in their original order from

S.
Oblivious injection. In the full-information setting, the adversary can choose the poison examples and their locations
based on S. In the oblivious variant, the adversary chooses the poison examples e′1, . . . , e

′
k and their locations

1 ≤ i1 < · · · < ik ≤ n+ k without knowing the original set S.
• Elimination. Adversary can eliminate k of the examples in S . When S is a sequence, the adversary only needs to state

the indexes 1 ≤ i1 < . . . , ik ≤ n of the removed examples.
Oblivious elimination. In the full-information setting, the adversary can choose the locations of the deleted examples
based on S. In the oblivious variant, the adversary chooses the locations without knowing the original set S.

• Substitution and it oblivious variant. These two settings are similar to data elimination, with the difference that the
adversary, in addition to the sequence of locations, chooses k poison examples e′1, . . . , e

′
k to substitute eij by e′j for all

j ∈ [k].

More general attack strategies. One can think of more fine-grained variants of the substitution attacks above by having
different ”budgets” for injection and elimination processes (and even allowing different locations for eliminations and
injections), but we keep the setting simple by default.

C.2. Taxonomy for Attacks on Feature Selection

Sometimes the goal of a learning process is to recover a model θ̂, perhaps from noisy data, that has the same set of features
Supp(θ̂) as the true model θ. For example, those features could be the relevant factors determining a decease. Such process
is called feature selection (or model recovery). A poisoning attacker attacking a feature selection task would directly try to
counter this goal. Now, regardless of how an attacker is transforming a data set S into S ′, let θ̂′ be the model that is learned
from S ′. Below we give a taxonomy of various attack scenarios.

• Feature adding. In this case, the adversary’s goal is to achieve Supp(θ̂′) 6⊆ Supp(θ). Namely, adding a feature that is
not present in the true model θ.

• Feature removal. In this case, the adversary’s goal is to achieve Supp(θ) 6⊆ Supp(θ̂′). Namely, removing a feature
that is present in the true model θ.

• Feature flipping. In this case, the adversary’s goal is to do either of the above. Namely, Supp(θ) 6= Supp(θ̂′), which
means that at least one of the features’ existence is flipped.

Targeted variants of the attacks above. For each of the three attack goals above (in the context of feature selection), one
can envision a targeted variant in which the adversary aims to add/remove or flip a specific feature i ∈ [p] where p is the
data dimension.

D. Borrowed Results
D.1. Sufficient Conditions for Model Recovery Using Lasso

In this section, we specify the sufficient conditions for a dataset that makes it a good dataset for robust recover using Lasso
estimator. We borrow these specifications from the work of (Thakurta & Smith, 2013).
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Definition D.1 (Typical systems). Suppose θ∗ ∈ [0, 1]p be a model such that |Supp(θ∗)| = s. Let X ∈ Rn×p and
Y ∈ Rn×1 and W = Y −X × θ∗. Also let XI ∈ Rn×s be a matrix formed by columns of X whose indices are in Supp(θ∗)
and XO ∈ Rn×(p−s) be a matrix formed by columns of X whose indices are not in Supp(θ∗). The pair (θ∗, [X Y ]) is
called an (n, p, s, ψ, σ)-typical system, if the following hold:

• Column normalization: Each column of X has `2 norm bounded by
√
n.

• Incoherence:
∥∥((XT

OXI)(X
T
I XI)

−1sign(θ∗))
∥∥
∞ ≤ 1/4.

• Restricted strong restricted: The minimum eigenvalue of XIX
T
I is at least ψ.

• Bounded noise
∥∥XT

O(In×n −XI(X
T
I XI)

−1XT
I )W

∥∥
∞ ≤ 2σ

√
n log(p).

The following theorem is a modified version of result of (Wainwright, 2009) borrowed from (Thakurta & Smith, 2013).
Theorem D.2 (Model recovery with Lasso (Wainwright, 2009)). Let (θ∗, [X Y ]) be a (n, p, s, σ, ψ)-typical system. Let
α = argmini∈p max(θ∗i , 1− θ∗i ). If n ≥ 16 · σ

ψ·α

√
s · log(p) and then θ̂ = Lasso([X Y ]) would have the same support

as θ∗ when λ = 4σ
√
n · log(p).

The following theorem is about robust model recovery with Lasso in (Thakurta & Smith, 2013).
Theorem D.3 (Robust model recovery with Lasso (Thakurta & Smith, 2013)). Let (θ∗, [X Y ]) be a (n, p, s, σ, ψ)-typical
system. Let α = argmini∈p max(θ∗i , 1− θ∗i ). If

n ≥ max(
16σ

ψ · α
√
s · log(p),

4s4k2(1/ψ + 1)2

log(p)σ2
)

then θ̂ = Lasso([X Y ]) would have the same support as θ∗ when λ = 4σ
√
n · log(p).

In addition, adding any set of k labeled vectors [X ′ Y ′] with `∞ norm at most 1 to [X Y ] would not change the support
set of the model recovered by Lasso estimator. Namely,

Supp

(
Lasso

([
X Y

X ′ Y ′

]))
= Supp(Lasso([X Y ]))

= Supp(θ∗).

Two theorems above are sufficient conditions for (robust) model recovery using lasso estimator. Bellow, we show two
simple instantiating of the theorems on Normal distribution. Theorem bellow from Wainwright (2009) shows that the Lasso
estimator with proper parameters provably finds the correct set of features, if the dataset and noise vectors are sampled from
normal distributions.

Theorem D.4 (Wainwright (2009)). Let X be a dataset sampled from N (0, 1/4)n×p and W be a noise vector sampled
from N (0, σ2)n. For any θ∗ ∈ (0, 1)p with at most s number of non-zero coordinates, for λ = 4σ

√
n× log(p) and

n = ω(s · log(p)), with probability at least 3/4 over the choice of X and W (that determine Y as well) we have
Supp(θ̂) = Supp(θ∗) where θ̂ = Lasso([X Y ]). Moreover, θ̂ is a unique minimizer for Risk(·, [X Y ]).

The above theorem requires the dataset to be sampled from a certain distribution and does not take into account the
possibilities of outliers in the data. The robust version of this theorem, where part of the training data is chosen by an
adversary, can be instantiatet using Theorem D.2 as follows:
Theorem D.5 (Thakurta & Smith (2013)). Let X be a dataset sampled from N (0, 1/4)n×p and W be a noise vector
sampled from N (0, σ2)n. For any θ∗ ∈ (0, 1)p, if λ = 4σ

√
n× log(p) and n = ω(s log(p) + s4 · k2), with probability

at least 3/4 over the choice of X,W (determining Y ), and Y = X × θ∗ + W it holds that, adding any set of k labeled
vectors [X ′ Y ′], such that rows of X ′ has `∞ norm at most 1 and Y has `∞ norm at most s, to [X Y ] would not change
the support set of the model recovered by Lasso estimator. Namely,

Supp

(
Lasso

([
X Y

X ′ Y ′

]))
= Supp(Lasso([X Y ]))

= Supp(θ∗).
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Note that Theorems D.4 and D.5 are instantiating of the generalized theorems D.2 for normal distribution and D.3 and are
proved by showing that the sufficient conditions of those theorems will happen with high probability over the choice of
dataset.

E. Proof of Theorem 3.1
In this section, we prove Theorem 3.1. We first restate the Theorem for convenience.

Theorem 3.1 (Restated). For any k, p ∈ N, there exist some n ∈ N and a dataset [X Y ] ∈ Rn×(p+1) such that if we
randomly shuffle the coordinates of X according to a permutation π to get π(X) and uses the dataset [π(X) Y ] to run the
Lasso estimator. Then, the probability of winning for an oblivious adversary in the security game of Definition 2.1 is at most
2/p, namely,

∀A : E
π←G

[
Advantage of A in OblFtrSel(k, [π(X) Y ] , Lasso)

)]
≤ 2

p
.

while a full-information adversary can win the security game of Definition 2.1 with probability 1.

∃A : E
π←G

[
Advantage of A in FullFtrSel(k, [π(X) Y ] , Lasso)

)]
= 1.

we first show two properties of a dataset [X Y ] that if hold, we can prove separation. Then we will show how to instantiate
a dataset with those two properties by changing a dataset that is sampled from a Gaussian distribution. The first notion
divides the columns of data to stable and unstable features based on the number of poisoning points required to remove or
add those features from or to the support set of the resulting model.

Now we state and prove the following theorem that separates the notion of oblivious and full-information poisoning attacks.
This theorem assumes the existence of a (k, ε)-resilient dataset that is k-stable on all but one feature.

Definition E.1 (Stable and unstable coordinates). Consider a dataset [X Y ] ∈ Rn×(p+1) with a unique solution for the
Lasso minimization. [X Y ] is k-unstable on coordinate i ∈ [p] if its ith coordinate of model learn on it is 0, namely
Lasso ([X Y ])i = 0 and there exist a data set [X ′ Y ′] with size k and `∞ norm at most 1 on each row such that

i ∈ Supp

(
Lasso

([
X Y

X ′ Y ′

]))
. On the other hand, [X Y ] is k-stable on a coordinate i, if for all datasets [X ′ Y ′] with

k rows and `∞ norm at most 1 on each row we either have

Lasso ([X Y ])i = Lasso

([
X Y

X ′ Y ′

])
i

= 0 or Lasso([X Y ])i · Lasso
([

X Y

X ′ Y ′

])
i

> 0.

Now we show how to use a dataset with only one k-unstable feature and prove the separation. The core idea is to shuffle the
columns and prevent the adversary from finding the unstable coordinate. The adversary who does not know which of the
coordinates is unstable cannot perform the attack but an adversary with the knowledge of the unstable coordinate can add
poisoning points and cause the unstable coordinate to be added to the support set. The following definition captures the
property of a dataset that adding the unstable feature is hard unless the adversary knows which feature is unstable.

Definition E.2 ((k, ε)-resilience). Consider a dataset [X Y ] ∈ Rn×(p+1) with a unique solution for the Lasso min-
imization and let T = Supp(Lasso([X Y ])). Also, let G be the set of all permutations that are fixed on T namely,
G = {π : [p]→ [p] | ∀i ∈ T ;π(i) = i}. We say [X Y ] is (k, ε)-resilient if for any dataset [X ′ Y ′] with k rows with `∞
norm at most 1, we have

Pr
π←G

[
Supp

(
Lasso

([
X Y

π(X ′) Y ′

]))
6= T

]
≤ ε,

where π(X ′) is the matrix produced by permuting the columns of X ′ according to π.

Theorem E.3 (Separating oblivious and full-information adversaries). Consider a dataset [X Y ] that is (k, ε)-resilient
and k-stable on all the coordinates except on 1 coordinate that is k-unstable. Suppose the challenger takes this dataset
and randomly shuffles the coordinates according to a permutation π to get π(X) and uses the dataset [π(X) Y ] to run the
Lasso estimator. Then, the probability of winning for an oblivious adversary in the security game of Definition 2.1 is at most
ε, while a full-information adversary can win the security game of Definition 2.1 with probability 1.
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Proof of Theorem E.3. We first show that winning the full-information game of Definition 2.1 is always possible. After
getting the dataset [X Y ] the adversary inspects the dataset to find out which coordinate is unstable and find a poisoning
dataset that would add that unstable coordinate to the support set of the model.

Now we show that no adversary can win the oblivious security game of Definition 2.1 with probability more than ε.
The intuition behind this claim is the symmetric nature of the Lasso estimator—by permuting the rows of a dataset
[X Y ] to [π(X) Y ] the Lasso would output the same output with permuted coordinates. Namely, Lasso([π(X) Y ]) =
π(Lasso([X Y ])).

Now, let π be the permutation chosen by the challenger and let θ̂ = Lasso([X Y ]) and let T = Supp(θ̂). Adversary
receives π(θ) and generates a poisoning dataset [X ′ Y ′]. Let A(π(θ̂)) denote the potentially randomized algorithm that the
adversary uses to generate the poison data, and let G = {π : [p]→ [p] | ∀i ∈ T ;π(i) = i}. Now we use (k, ε)-resiliency of
[X Y ] to argue about the probability of an oblivious adversary winning the game. The high level idea is that because the
oblivious adversary cannot discriminate between zero coordinates, he cannot find the right ordering of coordinates with a
high probability.

Pr
π←Sp

[X′|Y ′]←A(π(θ̂))

[
Lasso

([
π(X) Y

X ′ Y ′

])
6= T

]

= Pr
π←Sp,π

′←G
[X′|Y ′]←A(π(π′(θ̂)))

[
Lasso

([
π(π′(X)) Y

X ′ Y ′

])
6= T

]

= Pr
π←Sp,π

′←G
[X′|Y ′]←A(π(θ̂))

[
Lasso

([
π(π′(X)) Y

X ′ Y ′

])
6= T

]

= Pr
π←Sp,π

′←G
[X′|Y ′]←A(π(θ̂))

[
Lasso

([
X Y

π′−1(π−1(X ′)) Y ′

])
6= T

]

= Pr
π←Sp,π

′←G
[X′|Y ′]←A(π(θ̂))

[
Lasso

([
X Y

π′(π(X ′)) Y ′

])
6= T

]
≤ ε.

Therefore, the proof of Theorem E.3 is complete.

Remark E.4. Note that in Theorem E.3 the full information adversary is an “information-theoretic” adversary. In
particular, the the theorem states that the full-information adversary has all the information that is required to find the
unstable coordinate and also the poisoning dataset that would result in adding the unstable coordinate. Finding the right set
of poisoning examples might be computationally hard but that is not an issue since we are dealing with information theoretic
adversaries. Specifically, since we do not put any restriction on time complexity, all the adversary has to do is to try all
possible combinations of poisoning datasets and find the one that will add the unstable coordinate to the model. However,
for Construction E.6 in next section, we not require the full-information adversary to be computationally unbounded and its
running time is O(p).

E.1. Constructing the Dataset

Now we move on to constructing a dataset that is k-stable on all but one coordinate and is (k, ε)-resilient.

What values of k can we use? Before constructing the dataset, lets first see what values of k we can use to prove separation.
The following theorem states that if k > ω(λ) even an oblivious adversary can add any non-relevant feature to the support
set of resulting model. Therefore, in our separation, we are interested in values of k = o(λ) as we know for k = ω(λ) both
the oblivious and full-information adversaries have almost full advantage.

Theorem E.5. Let X ∈ Rn×p be an arbitrary matrix, θ∗ ∈ [0, 1]p be an arbitrary vector, W be a noise vector sampled
from N (0, σ2)n×1, and let Y = X × θ∗ +W . Also let λ be the penalty parameter that is used for Lasso. For any i ∈ [p],



On the Power of Oblivious Poisoning Attacks

there is an oblivious adversary that adds k = 2λ labeled examples [X ′ Y ′] with `1 norm at most 1 such that

i ∈ Supp

(
Lasso

([
X Y

X ′ Y ′

]))
.

Theorem E.5 shows that there are oblivious adversaries that use budget 2λ and add non-relevant features to the model
independent of what distribution the dataset is sampled from. On the other hand, based on Theorem D.5 we know that
if the data is sampled from Gaussian distribution, for λ = O(

√
n), the Lasso estimator is robust against full-information

adversaries with budget O(
√
n). Theorem E.5 which shows the almost tightness of the robustness bounds of Theorem D.5

makes Gaussian distribution not suitable for separating full-information and oblivious adversaries. Following, we show that
by tweaking the Gaussian distribution we can achieve the separation.

Construction E.6. Consider a vector θ∗ ∈ Rp with first s coordinates having non-zero values and last p− s coordinates
are equal to 0. Let λ = 4σ

√
n× p and k < λ such that n ≥ s · log(p) + s4 · k2. We construct a dataset

[X Y ] =

[
X0 Y0

X1 Y1

]
∈ R(n+λ−k)×p

where X0 is generated by first sampling from N (0, 1/4)n×p and setting the last coordinate to 0. Namely

X0 =

 N (0, 1) . . . N (0, 1) 0
...

. . .
...

...
N (0, 1) . . . N (0, 1) 0

 .
And

Y0 = X0 × θ∗ +W

for W is the noise vector sampled from N (0, σ2)n.

X1 ∈ R(λ−k)×p whose all elements are equal to 0 except the last coordinate that 1 and Y1 is a vector that is equal to 1
everywhere. Namely,

X1 =

 0 . . . 0 1
...

. . .
...

...
0 . . . 0 1

 and Y1 =

 1
...
1

 .
Now we prove that the dataset of Construction E.6 has all the required properties of Theorem E.5. First show that Lasso
estimator can recover θ∗ from the dataset [X Y ] of Construction E.6.

Claim E.7. Let [X Y ] =

[
X0 Y0

X1 Y1

]
be the dataset of Construction E.6. With probability at least 3/4 over the choice of

X0 and W in Construction E.6, Risk(·, [X Y ]) has a unique minimizer and we have

Supp(Lasso([X Y ])) = Supp(θ∗).

In addition, we have
Lasso([X Y ])) = Lasso([X0 Y0]).

Now we show that the dataset of Construction E.6 is k-stable on all features except the last coordinate.

Claim E.8. With probability at least 3/4 over the choice of X0 and W0. The dataset [X,Y ] of construction E.6 is k-stable
on all but the first p− 1 coordinates and is k-unstable on the last coordinate.

And finally we show the the dataset of Construction E.6 is (k, ε)-resilient.

Claim E.9. Let [X Y ] =

[
X0 Y0

X1 Y1

]
be the dataset of Construction E.6. With probability at least 3/4 over the choice of

X0 and W in Construction E.6, [X Y ] is (k, (1+q)
2

p−s )-resilient, where q = maxi∈[p](|Lasso ([X0 Y0])i|).
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Note that in Claim E.9, the value of q would be at most 1. This is because Lasso estimator would always output a model θ̂ in
(0, 1)p. Moreover, since (X0, Y0) is sampled from a Gaussian setting of Theorem distribution, q would be very close to
maxi∈[p] θ

∗
i as well. This is because that is very close to θ∗ in `2 norm. Since θ∗ ∈ (0, 1)p and q cannot be much larger than

1, for large enough n.
Remark E.10 (Generalization of Construction E.6). In Construction E.6, the feature matrix X0 is sampled from Normal
distribution. The reason behind this is because we need the sampled dataset to be suitable for Lasso estimator. In particular,
based on Theorem D.4 and D.5, we know that sampling from Normal distribution would generate a “good” dataset for
Lasso estimator to robustly recover the correct feature set, with high probability. The specifications of a “good” dataset
for Lasso are explained in Theorems D.2 and D.2 in appendix. We can build the dataset of Construction E.6 based on any
feature matrix X0 that satisfies these conditions. This means that sampling from Gaussian is not necessary and as long as
X0 is “good”, one can prove the separation.

E.2. Proofs of Theorem E.5, Claim E.7, Claim E.8 and Claim E.9

We first state the following useful lemma. See supplementary material for proof of the Lemma.
Lemma E.11. Let X ∈ Rn×p and Y ∈ Rn. Let θ̂ be a vector that minimizes Risk(·, [X Y ]). Then, for all non-zero
coordinates j ∈ [p], where θ̂j 6= 0 we have

n∑
i=1

X(i,j) · (Yi − 〈θ̂, Xi〉) = −λ · Sign(θ̂j),

and for all 0 coordinates j ∈ [p], where θj = 0, we have∣∣∣∣∣
n∑
i=1

X(i,j) · (Yi − 〈θ̂, Xi〉)

∣∣∣∣∣ < λ.

Now, we prove Theorem E.5 and show how to construct the poisoning dataset by using the lemma above.

Proof of Theorem E.5. Consider X ′ which is a k × p matrix that is 0 everywhere except on the ith column that is 1 and Y ′

is a k× 1 vector that is equal to 1 everywhere. We show that by adding this matrix the adversary is able to add ith coordinate

to the support set of the θ̂′ = Lasso

([
X Y

X ′ Y ′

])
. To prove this, suppose the ith coordinate of θ̂′ is 0. Thus, we have([

X
X ′

]T
×
([

Y
Y ′

]
−
[
X
X ′

]
× θ̂′

))
i

= k +
(
XT × (Y −X × θ̂′)

)
i
. (1)

Now we prove that θ̂′ also minimizes the Lasso loss over [X Y ]. This is because for any vector θ with ith coordinate 0, we
have

Risk

(
θ,

[
X Y

X ′ Y ′

])
= k + Risk(θ, [X Y ]).

Now, let θ̂ be the minimizer of Risk(·, [X Y ]). We know that θ̂ is 0 on the ith coordinate. Therefore we have,

Risk

(
θ̂,

[
X Y

X ′ Y ′

])
= k + Risk

(
θ̂, [X Y ]

)
≥ Risk

(
θ̂′,

[
X Y

X ′ Y ′

])
= k + Risk(θ̂′, [X Y ]). (2)

where the last inequality comes from the fact that θ̂′ minimizes the loss over
[
X Y

X ′ Y ′

]
. On the other hand, we know that

Risk(θ̂′, [X Y ]) ≥ Risk(θ̂, [X Y ]) (3)
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because θ̂ minimizes Risk(·, [X Y ]). Inequalities 2 and 3 imply that

Risk(θ̂, [X Y ]) = Risk(θ̂′, [X Y ])

and that θ̂′ minimizes Risk(·, [X Y ]). Therefore, based on Lemma E.11, since the ith coordinate of θ̂′ is zero we have∣∣∣(XT × (Y −X × θ̂))i
∣∣∣ ≤ λ. (4)

Combining Equations 1 and 4 we have ∣∣∣∣∣
[
X
X ′

]T ([
Y
Y ′

]
−
[
X
X ′

]
× θ̂
)
i

∣∣∣∣∣ > λ.

This, however, is a contradiction because of Lemma E.11 and the fact that the ith coordinate is zero. Hence, the ith

coordinate could not be 0 and the proof is complete.

Proof of Claim E.7. We first prove the uniqueness property. Let X ′0 be the first p− 1 columns of X0. Suppose there are
two solutions θ̂1 and θ̂2 for Lasso on [X Y ]. We show that [X ′0 Y0] has two solutions as well. We first observe that the last
coordinates of θ̂1 and θ̂2 should both be 0. This is because of the fact that for any θ, we have∣∣∣∣∣

n∑
i=1

X(i,p) · (Yi − 〈θ̂, Xi〉)

∣∣∣∣∣ = |λ− k| < λ

which by Lemma E.11 implies that the last coordinate for any Lasso solution should be 0. Now let θ̂′1 and θ̂′2 be the first
p− 1 coordinates of θ̂1 and θ̂2 respectively. We show that θ̂′1 and θ̂′2 both minimize Risk(·, [X ′0 Y0]). We have

Risk(θ̂0, [X Y ]) = Risk(θ̂0, [X0 Y0]

+ Risk(θ̂0, [X1 Y1])− 2λ ·
∥∥∥θ̂0∥∥∥

1

(since (θ̂0)p is 0) = Risk(θ̂′0, [X
′
0 Y0]

+ Risk(θ̂0, [X1 Y1]− 2λ ·
∥∥∥θ̂0∥∥∥

1

= Risk(θ̂′0, [X
′
0 Y0]

+ λ− k + 2λ ·
∥∥∥θ̂0∥∥∥

1
− 2λ ·

∥∥∥θ̂0∥∥∥
1

Similarly, we have

Risk(θ̂′1, [X,Y )] = Risk(θ̂′1, [X
′
0 Y0] + λ− k

which implies
Risk(θ̂′0, [X

′
0 Y ]) = Risk(θ̂′1, [X

′
0 Y ])

and they both minimize Risk(·, [X ′0 Y0]).

Now note that [X ′0 Y0] have all the properties of Theorem D.4 and we have [X ′0 Y0] with probability at least 3/4 has
a unique Lasso solution. Therefore, the Lasso solution for [X Y ] is also unique with probability at least 3/4. Also
note that this unique solution would have the correct support set as [X ′0 Y0] would have the correct support set based on
Theorem D.4.

Proof of Cliam E.8. We first show the k-unstability of the last coordinate. Consider a poisoning dataset [X ′ Y ′] ∈ Rp,
where

X ′ =

 0 . . . 0 1
...

. . .
...

...
0 . . . 0 1

 and Y ′ =

 1
...
1

 .
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We prove that p ∈ Lasso

([
X Y

X ′ Y ′

])
. Suppose this is not the case and we have zero pth corodinate namely,

Lasso

([
X Y

X ′ Y ′

])
p

= 0. We have ∣∣∣∣∣
n+λ∑
i=1

X(i,p) · (Yi − 〈θ̂, Xi〉)

∣∣∣∣∣ = λ.

This is contradictory with Lemma E.11 that states this value should be less than λ because the pth coordinate is 0. Therefore,
the pth coordinate is in the support set.

Now, we focus on proving the k-stability of all other coordinates. Suppose by adding a subset [X ′ Y ′] to [X Y ] and we

get a model θ̂′ = Lasso

([
X Y

X ′ Y ′

])
that is non-zero on the ith coordinate for some p > i > s. The idea is to build a

poisoning dataset [X ′′ Y ′′] ∈ Rk×p that when added to [X0 Y0] causes the ith coordinate to be added to the support set.
Let X ′′ be the same matrix as X ′ except the last column that is set to 0. Namely,

X ′′ =

 X ′(1,1) . . . X ′(1,p−1) 0
...

. . .
...

...
X ′(k,1) . . . X ′(k,p−1) 0

 .
And let

Y ′′ = Y ′ − (X ′ −X ′′)× θ̂′.

We prove that i ∈ Supp

(
Lasso

([
X0 Y0

X ′′ Y ′′

]))
. Note that if we prove this, the proof would be complete as we know that

[X0, Y0] is k-stable for all coordinates with probability at least 3/4 based on Theorem D.5 (Note that similar to the proof of
Claim E.7, the fact that the last coordinate of X0 is not sampled from Gaussian would not cause any issue). However, there
is one subtle issue that might happen here, if the `∞ norm of Y ′′ might be larger than s, then the guarantee of theorem D.5
does not hold anymore. But that will not happen because we restrict the `∞ norm of Y ′ to be at most 1 and the fact that `∞
norm of θ̂′ is at most 1 based on the way lasso estimator is defined. This means that the `∞ norm of Y ′′ is at most 2. Let
θ̂′′ ∈ Rp be equal to θ̂′ everywhere except on the last coordinate that is equal to 0. We have

Risk(θ̂′′,

[
X Y

X ′ Y ′

]
]) =

∥∥∥∥∥∥
Y0Y1
Y ′

−
X0

X1

X ′

× θ̂′
∥∥∥∥∥∥
2

2

+ 2 · λ ·
∥∥∥θ̂′∥∥∥

1

=
∥∥∥Y0 −X0 × θ̂′′

∥∥∥2
2

+ |(λ− k)(1− θ̂′p)2|

+
∥∥∥Y ′ −X ′ × θ̂′∥∥∥2

2

+ 2 · λ ·
∥∥∥θ̂′′∥∥∥

1
+ 2λ · |θ̂′p|

Now based on the way X ′′, Y ′′ and θ′′ are defined we have Y ′′ −X ′′ × θ′′ = Y ′ −X ′ × θ′. Therefore,

Risk

(
θ̂′,

[
X Y

X ′ Y ′

])
=

∥∥∥∥[Y0Y ′′
]
−
[
X0

X ′′

]
× θ̂′′

∥∥∥∥2
2

+ |(λ− k)(1− θ̂′p)2|

+ 2 · λ ·
∥∥∥θ̂′′∥∥∥

1
+ 2λ · |θ̂′p|

= Risk(θ̂′′,

[
X0 Y0

X ′′ Y ′′

]
)

+ |(λ− k)(1− θ̂′p)2|+ 2λ · |θ̂′p|
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This means in order for θ̂′ to minimize Risk

(
·,
[
X Y

X ′ Y ′

])
, the parameter θ̂′′ should also minimize Risk

(
·,
[
X0 Y0

X ′′ Y ′′

])
.

This means that θ′′ = Lasso

([
X0 Y0

X ′′ Y ′′

])
has the ith column in its support. Hence the proof is complete.

Proof of Claim E.9. Suppose by adding a poisoning dataset [X ′ Y ′] to [X Y ] the pth coordinate would be added to the

support of the solution. Namely, p ∈ Supp(θ̂′) for θ̂′ = Lasso

([
X Y

X ′ Y ′

]
)

)
. Now let

[X ′′ Y ′′] =

[
X Y

X ′ Y ′

]
∈ R(n+λ)×(p+1).

Based on Lemma E.11, we have

n+k∑
i=1

X ′′(i,p) · (Y
′′
i − 〈θ̂′, X ′′i 〉) = λ · Sign(θ̂′p). (5)

Based on the way the dataset is constructed, we have

n+λ∑
i=1

X ′′(i,p) · (Y
′′
i − 〈θ̂′, X ′′i 〉)

=

n∑
i=1

X ′′(i,p) · (Y
′′
i − 〈θ̂′, X ′′i 〉) +

n+λ−k∑
i=n+1

X ′′(i,p) · (Y
′′
i − 〈θ̂′, X ′′i 〉) +

k∑
i=1

X ′(i,p) · (Y
′
i − 〈θ̂′, X ′i〉)

= 0 + (λ− k) · (1− θ̂′p) +

k∑
i=1

X ′(i,p) · (Y
′
i − 〈θ̂′, X ′i〉). (6)

Therefore by combining 5 and 6 we have

|
k∑
i=1

X ′(i,p) · (Y
′
i − 〈θ̂′, X ′i〉)| = |λ Sign(θ̂′p)− (λ− k)(1− θ̂′p)| > k. (7)

Now consider the quantity
∑k
i=1 |Y ′i − 〈θ̂′, X ′i〉|2. First note that we have

k∑
i=1

|Y ′i − 〈θ̂′, X ′i〉|2 ≤
k∑
i=1

|Y ′i − 〈θ̂′′, X ′i〉|2

where θ̂ = Lasso([X Y ]). This is correct because otherwise θ̂′′ would have smaller loss than θ̂′. By Claim E.7 we know
that θ̂ = θ̂′′ which implies

k∑
i=1

|Y ′i − 〈θ̂′, X ′i〉|2 ≤
k∑
i=1

|Y ′i − 〈θ̂, X ′i〉|2.

On the other hand we have

k∑
i=1

|Y ′i − 〈θ̂, X ′i〉|2 ≤
k∑
i=1

(1 + q|Xi|)2 ≤ k(1 + q)2 (8)

which in turn implies

k∑
i=1

|Y ′i − 〈θ̂′, X ′i〉|2 ≤ k(1 + q)2. (9)
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Now by Cauchy–Schwarz inequality we have(
k∑
i=1

|Y ′i − 〈θ̂′, X ′i〉|2
)
·

(
k∑
i=1

X ′2(i,p)

)
>

(
k∑
i=1

|Y ′i − 〈θ̂′, X ′i〉| ·X ′(i,p)

)2

. (10)

Combining inequalities 10, 7 and 9 we get

k∑
i=1

X ′2(i,p) > k/(1 + q)2. (11)

This means that the average of last coordinate of X ′ should have most of the weight of the whole matrix. In particular, since
X ′(i,j) < 1 for all (i, j) we have

k∑
i=1

|X ′(i,p)| > k/(1 + q)2.

Also since each row in X ′ have `1 norm bounded by 1, we have

k∑
i=1

p∑
j=1

|X ′(i,p)| ≤ k.

This implies that number of columns j for which

k∑
i=1

|X ′(i,j)| > k/(1 + q)2

holds is at most (1 + q)2. Therefore, for any [X ′ Y ′] the probability of π([X ′ Y ′]) having sum at least k over the last
column is at most (1 + q)2/(p− s). This means the probability of π(X ′) adding the pth column to the support set would be
at most (1 + q)2/(p− s).

F. Separating Oblivious and Full-information Poisoning on Classification
In this section, we show a separation on the power of oblivious and full-information poisoning attacks on classification. In
particular we show that empirical risk minimization (ERM) algorithm could be much more susceptible to full-information
poisoning adversaries, compared to oblivious adversaries. We first restate Theorem 3.2 for convenience.

Theorem 3.2[Restated]. There is a distribution of distributions D such that there is a data injecting adversary with budget
ε · n that wins the full-information security game for classification by advantage ε, namely

∃A : E
D←D
S←Dn

[
Advantage of A in FullRisk(ε · n,S,ERM, D)

)]
≥ Ω(ε).

On the other hand, any adversary will have much smaller advantage in the oblivious game. Namely, the following holds.

∀A : E
D←D
S←Dn

[
Advantage of A in OblRisk(ε · n,S,ERM, D)

)]
≤ O(ε2).

Proof. Here we only sketch the proof. To prove this we use the problem of learning concentric halfspaces in Gaussian
space N (0, 1)2. We assume that the prior distribution is uniform over all concentric halfspaces. We first show that there is a
full-information attack with success (ε). The way this attack works is as follows, attacker first uses ERM to learn a halfspace
w1 on the clean data. Assume this halfspace has risk δ. Then the attacker selects another halfspace w2 that disagrees with
w1 on ε · n− 1 number of points in the training data. Note that this is possible because the attacker can keep rotating the
half-space until it has exactly n · ε− 1 points disagreeing with w1. Now if the adversary puts all the poison points on the
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separating line for w1 and with the opposite label of what w1 predicts, then ERM would prefer w2 over w1. Therefore the
empirical error of w2 on clean dataset would be at least equal to ε− δ. Now if we increase n, the generalization error would
go to zero which means the population error of w2 would be close to ε− δ. Also, since we are assuming the problem is
realizable by half-spaces, it means δ would also converge to 0. Therefore, the final population risk could be bounded to be at
least ε/2 for n larger than some reasonable values. Which means our proof for the full-information attack is complete.

Now, we show that no oblivious adversary cannot increase the error by more than ε2, on average. The reason behind this
boils down to the fact that each poison point added can affect at most ε-fraction of the choices of ground truth. To be
more specific, we can fix the poison data to a fixed set Dp with size ε · n, as we can assume that the oblivious adversary is
deterministic. Now if we fix the ground truth to some wg, and define the epsilon neighborhood of a model w to be all the
points that have angle at most ε · π with w and denote it by wε. Then we have

E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp)

[Risk(ERM(wp))]

≤ E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp)

[RiskDc
(wp)] + δ (12)

Where δ is the generalization parameter that relates to n and goes to 0 with rate 1/n. Now consider an event E where the
angle between wc and wg is at most ε · π and wg2ε ∩Xc has at least ε points on each side of wg . We denote the probability
of this event by 1− δ′ and we know that δ′ goes down to 0 as n grows, by rate 1/

√
n (Using Chernoff Bound). Now we

can observe that conditioned on E, we have RiskDc
(wp) ≤ |wg2ε ∩Xc|. This is because the poison points cannot increase

the errorn by more than ε so wp would disagree with wc on at most ε · n points in Dc. On the other hand, we know that
in 2ε neighborhood of wg there are at least ε · n points on each side of wg, which means there are at least ε · n points on
each side of wc (because wc and wg would fall between the same two points in Dc). Therefore, the poisoned model, would
definitely be in the 2 · ε neighborhood of the wg . At the same time, we know that the maximum number of points in Dc that
wg and wp disagree on are at most equal to the number of poison points that fall in their disagreement region. And since the
disagreement region is a subset of wg2ε, we have the maximum number of points in Dc that wg and wp disagree on are at
most equal to |wg2ε ∩Xc|. Now having this, using Equation (12) we can write

E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ |Dp ∩ wg2ε|
n

+ δ + δ′

Now by also taking the average over wg we get

E
wg←D

Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ E
wg←D

[
|Dp ∩ [wg2ε|

n
] + δ + δ′ = 2ε2 + δ + δ′

As δ and δ′ converge to 0 with rate 1/
√
n, for n ≥ ω(1/ε2) we have

E
wg←D

Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ O(ε2).

We also state the theorem about separation of oblivious and full-information adversaries in the data elimination setting. This
theorem has shows that the gap between oblivious and full-information adversaries could be wider in the data elimination
settings. We use FullRiskelim and OblRiskelim to denote the information risk in presence of oblivious and full-information
data elimination attacks.
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Theorem F.1. There is a distribution of distributions D such that there is a data elimination adversary with budget ε · n
that wins the full-information security game for classification by advantage ε, namely

∃A : E
D←D
S←Dn

[
Advantage of A in FullRiskelim(ε · n,S,ERM, D)

)]
≥ Ω(ε).

On the other hand, any adversary will have much smaller advantage in the oblivious game. Namely, the following holds.

∀A : E
D←D
S←Dn

[
Advantage of A in OblRiskelim(ε · n,S,ERM, D)

)]
≤ e−ω((1−ε)n).

Proof. For the negative part on the power of full-information attacks, we observe that for a fixed wg the attacker can find a
half-space wc that has angle πε · /2 with the ground-truth wg , and remove all the points where wc and wg disagree. Note that
the number of points in the disagreement region would be at most ε with some large probablity 1− δ where δ goes to 0 with
rate 1/

√
n. After the adversary removes all the points in disagreement region, the learner cannot distinguish them and will

incur an error ε/2 on average. We note that this attack is similar to the hybrid attack described in Diochnos et al. (2019). For
the positive result, we make a simple observation that oblivious poisoning adversary can only reduce the sample complexity
for the learner. In other words, non-removed examples would remain i.i.d examples. This means that after removal, we
can still use uniform convergence theorem to bound the error of resulting classifier. Since the error of learning realizable
half-spcaces will go to zero with rate Ω(1/n), therefore the average error after the attack would be Ω(1/(1− ε)n)).

G. Feature Selection Experiments; More Details
In this section, we give further details about the particular construction for our model recover experiments in Section 4 and
the real-world experiments for larger datasets.

G.1. Synthetic Experiments

We construct our dataset exactly as in Construction E.6, so we have:

[X Y ] =

[
X0 Y0

X1 Y1

]
∈ R(n+λ−k)×p,

In particular, we set n = 1000, p = 100, 000, k = 1, and s = 5 in our construction, so our dataset has 999 + λ rows and
100, 000 features. We set σ = 1/4 for our noise vector W, which determines λ. We use scikit-learn’s implementation of
Lasso (Pedregosa et al., 2011), setting the regularization parameter to 2λ/n, as defined in Section 1. Due to numerical
instability, we use λ = 121 (which is slightly higher than the 4σ

√
n log(p) in the construction) to instantiate the dataset,

giving us:

[X Y ] =

[
X0 Y0

X1 Y1

]
∈ R(n+λ−k)×p ∈ R1,120×100,000

where X0, Y0, X1, and Y1 are given in Construction E.6.

G.2. Real-world Experiment

For our real-world datasets, we use four datasets typically used in the model recovery setting:

• Boston. (Harrison & Rubinfeld, 1978) (506 examples, 13 features) The task in this dataset is to predict the median
value of a house in the Boston, Mass. area, given attributes that describe its location, features, and surrounding area.
The outcome variable is continuous in the range [0, 50].

• TOX. (Golub et al., 1999b) (171 examples, 5,748 features) The task in this dataset is to predict whether a patient
is a myocarditis and dilated cardiomyopathy (DCM) infected male, a DCM infected female, an uninfected male, or
an uninfected female. Each feature is a gene, and each example is a patient. The outcome variable is discrete in
{1, 2, 3, 4}, for each of the four possibilities.
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• Prostate GE. (Golub et al., 1999a) (102 examples, 5,966 features) The task in this dataset is to predict whether a
patient has prostate cancer. Each feature is a gene, and each example is a patient. The outcome variable is binary in
{0, 1}, for cancer or no cancer.

• SMK. (Golub et al., 1999b) (187 examples, 19,993 features) The task in this dataset is to predict whether a smoker has
lung cancer or not. Each example is a smoker, and each faeture is a gene. The outcome variable is binary in {0, 1} for
cancer or no cancer.

For the larger datasets, we see the same phenomenon as the Boston dataset in Section 4, where there certainly exist unstable
features that require a small number of rows to poison, and stable features that require a large number of rows, as shown in
Figure 3. Even in subsets of 50 features from the full dataset, we see the same phenomenon, seen in 4. For instance, in TOX,
feature 106 requires less than 5 poison rows to add it to the dataset, while the average is 22 and the maximum number of
rows is above 60. An non-oblivious adversary could exploit feature 106, while an oblivious adversary would pick a feature
that takes 22 poison rows, in expectation. In Figure 3, we show the same phenomenon on each dataset for a subset of 50
features for visual clarity.

Figure 3. TOX, Prostate GE, SMK (full dataset). We attacked all the features not in Supp(θ̂), and plotted the number of rows needed to
add feature i to the dataset. The red horizontal line is the mean number of rows. The top figure shows Prostate GE, the middle TOX, and
the bottom SMK.

H. Separating Oblivious and Full-information Classification: Experiments
In this section, we design an experiment to empirically validate the claim made in Theorem 3.2, that there is a separation
between oblivious and full-information poisoning adversaries for classification. We setup the experiment just as in the proof
of Theorem 3.2, as follows.

First, we sample training points X = x1, x2, . . . xm for m = 1, 000 from the Gaussian space N (0, 1)2, and pick a random
ground-truth halfspace w∗ from N (0, 1)2. Using w∗, we find our labels y1, y2, . . . ym by taking (w∗)Txk for k ∈ [m]. This
ensures the data is linearly separable by the homogeneous halfspace produced by w∗.

To attack this dataset simulating our full-information adversary with budget ε, we construct ε ·m poison points p as follows:

p = cos(επ) · v

‖v‖
+ sin(επ) · w

‖w‖
, where v =

[
1 −w1

w2

]
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Figure 4. TOX, Prostate GE, SMK (50 features). We choose a random subset of 50 features not in Supp(θ̂), and plotted the number of
rows needed to add feature i to the dataset. The red horizontal line is the mean number of rows. The top figure shows Prostate GE, the
middle TOX, and the bottom SMK. The red colored bar shows the k-unstable feature in the dataset that a non-oblivious adversary could
exploit.

and we add ε · m of these p rows to our dataset. Note that this specific p corresponds to halfspace w2 in our Proof of
Theorem 3.2, the halfspace obtained by rotating the original halfspace until it has exactly ε ·m points disagreeing with w∗.
We label each of these p rows to be yp = −(w∗)T p, the opposite label from ground-truth. Then, we train our halfspace via
ERM on this poisoned dataset of m · (1 + ε) points (from appending ε ·m rows of p). We evaluate our poisoned halfspace
on another X ′ = x′1, x

′
2, . . . x

′
m test points from the same Gaussian N (0, 1)n distribution.

To attack this dataset simulating the oblivious adversary, we try three oblivious strategies of attack that an adversary with no
knowledge of the dataset might wage, each with ε budget:

1. Sample a single random point p from N (0, 1)n and repeat it ε ·m times. Choose the label py uniformly at random
from {−1, 1}. Poison by adding these ε ·m rows to the dataset.

2. Sample ε ·m points IID from N (0, 1)n and choose the label py uniformly at random from {−1, 1}. Label all of the
ε ·m points with py . Poison by adding these ε ·m rows to the dataset.

3. Sample ε ·m points IID fromN (0, 1)n and choose the label py uniformly at random from {−1, 1} for each point. That
is, we flip a coin to label each poison example, rather than just choosing one label, as in 2. Poison by adding these ε ·m
rows to the dataset.

We also use the same ERM algorithm, as in the full-information case, to train the poisoned classifiers on these three oblivious
poisoning strategies.

We repeat this experiment 20 times for poison budget ε ∈ {0, 0.01, 0.02, . . . 0.19, 0.2}. We observe in Figure 5 that there
indeed exists a separation between the power of our full-information adversary and the oblivious adversaries. The full-
information adversary can increase the error linearly with ε using this strategy, while the oblivious adversaries fail to have
any consistent impact on the resulting classifier’s error with their strategies.
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Figure 5. Oblivious and full-information poisoning separation in classification. Over 20 trials, we vary the poisoning budget ε and
construct poisoned datasets as discussed above for each adversary. We plot the effect of each adversary’s attack on the accuracy of our
resulting poisoned ERM halfspace.


