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Abstract

Detection of Out-Of-Distribution (OOD) samples
in real time is a crucial feature for safety-critical
applications of ML models. We extend previous
work showing that, on a number of experiments,
uncertainty estimation techniques fail at detect-
ing OOD samples on real-world tabular medical
data. The experiments described here can serve
as benchmark tasks for evaluating OOD detection
on medical tabular data. These results suggest
that neural discriminators are especially overcon-
fident about their ability to detect OOD samples.
Following this intuition we show that, for a class
of widely-used network architectures and a list of
common uncertainty metrics, neural discrimina-
tors generalize their confidence level to previously
unseen areas of the feature space, effectively de-
fusing the possibility to detect OOD reliably.

1. Introduction

Neural networks and machine learning models have
achieved remarkable performance on a variety of medical
tasks ranging from medical imaging to clinical risk assess-
ment (Tang, 2019; Imai et al., 2020). However, deployed
models assume that samples are coming from the same
distribution as training (that is, in-distribution) data and
their performance degrades rapidly when this assumption is
violated (Beede, 2020). In this paper we focus on the phe-
nomenon of covariate shift, namely the changes in the fea-
ture distributions (Shimodaira, 2000; Moreno-Torres et al.,
2012). In medical settings, this could amount to receiving
samples from different hospitals, changes in a patient popu-
lation, observing patients with a previously unseen disease,
or receiving corrupted data (Curth et al., 2020; Martensson
et al., 2020). Therefore, reliable detection of OOD sam-
ples in real-time is crucial for real-world applications in
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high-stakes areas such as healthcare.

The problem is exacerbated by the fact that neural networks
(NNs) often make wrong predictions with very high con-
fidence. In particular, neural networks are susceptible to
small perturbations of inputs (Goodfellow et al., 2015), the
uncertainty of predictions of ReLU networks is often mis-
calibrated (Guo et al., 2017; Lee et al., 2018), and they
produce over-confident predictions on OOD samples (Lak-
shminarayanan et al., 2017; Hendrycks & Gimpel, 2017;
Liang et al., 2018). Despite these challenges, the impor-
tance of being able to assess reliability of deployed models
has led to the development of new methods for uncertainty
quantification and OOD detection.

While there are proposed benchmarks on other data types,
(Ovadia et al., 2019; Ren et al., 2019), many of the uncer-
tainty estimation techniques focus mainly on the imaging
domain, an area where the OOD detection problem has re-
ceived a lot of attention in recent years (Lee et al., 2018;
Liang et al., 2018; Cao et al., 2020). However, the problem
of medical tabular and mixed-type datasets has not been
addressed sufficiently.

The key contributions of our work are the following:

* We show that the problem of OOD detection is far from
solved in the medical domain: we extend previous
work showing that uncertainty estimation techniques
fail at detecting OOD samples on real-world tabular
medical data.

* We take a cue from the results of perturbation exper-
iments to prove that a class of NN over-generalizes
confidence level from training to OOD data, crippling
their ability to detect OOD reliably.

* We provide an open-source implementation of the
OOD detection models and all the experiments. This
can serve as a benchmark for OOD detection on pub-
licly available medical tabular data.

2. Related Work

In order to ensure safe integration into practical applications
(Bhatt et al., 2020; D’ Amour et al., 2020; Kompa et al.,
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2021), recent research efforts yielded a plethora of
methods to quantify a neural network’s certainty in its
prediction, of which we present a selection here. In a
classification setting, these include ensembling techniques
(Lakshminarayanan et al., 2017; Pearce et al., 2020;
Wilson & Izmailov, 2020), approaches based on variational
inference (Blundell et al., 2015; Gal & Ghahramani, 2016)
or neural parameterizations of Dirichlet distributions
(Malinin & Gales, 2018; Joo et al., 2020; Charpentier
et al., 2020), hybrid modelling using density estimation
(Grathwohl et al., 2020; Mukhoti et al., 2021), modernized
RBF networks (Van Amersfoort et al., 2020), and more
tractable neural approximations of Gaussian Processes (Liu
etal., 2020; Adlam et al., 2020; van Amersfoort et al., 2021).

At the same time, other works have analyzed limitations and
failure modes of such techniques. These span from concerns
about model calibration (Guo et al., 2017) to missing
robustness to distributional shift (Ovadia et al., 2019; Koh
et al., 2020) and inadequate uncertainty estimates (Kompa
et al., 2020; Kopetzki et al., 2020). Furthermore, it has been
shown empirically that the popular method of bootstrapping
is not beneficial for neural networks (Nixon et al., 2020)
and that even exact Bayesian neural network inference is
not robust to distributional shift (Izmailov et al., 2021) and
often underperforms compared to point estimates when the
posterior is not tempered (Wenzel et al., 2020). Theoretical
analyses have further uncovered that neural discriminators
yield arbitrarily high-confidence predictions in regions
of low-data density (Hein et al., 2019) and that they - in
a similarly haphazard manner - generalize uncertainty
levels in regions of the feature space without any training
data (Ulmer & Cina, 2021), as we discuss in section 4.2.
Mukhoti et al. (2021) show that epistemic and aleatoric
uncertainty cannot be disentangled successfully purely
based on the output distribution of a single network. Even
for models that exclusively model the data density, analyses
by Nalisnick et al. (2019) and Lan & Dinh (2020) have cast
doubt on their ability to identify OOD inputs.

Unfortunately, most of the aforementioned works evalu-
ate their approaches on the image or text domain. For
many practical applications, data is supplied in tabular form
containing variables of many different types. This creates
unique challenges for which above uncertainty estimation
and OOD detection techniques are pathologically understud-
ied. In line with our experiments in section 4.1, we present
a number of studies based on such tabular data in a medical
context, namely electronic health records (EHRs): Ruhe
et al. (2019) present a Bayesian modelling approach in this
regard, while Curth et al. (2020) formalize and implement a
domain adaptation procedure for EHRs. Dusenberry et al.
(2020) test models and their predictive uncertainty using

time series data from EHRs, while Ulmer et al. (2020) ana-
lyze the behavior of models and their confidence when faced
with corrupted feature values and unseen patient groups.
Myers et al. (2020) identify groups for which models might
underperform. Chan et al. (2020) show that using unlabeled
data can improve calibration under distributional shift.

3. Methods

For the OOD detection tasks, we consider several families of
models with appropriate uncertainty quantification metrics:

* Logistic Regression (LogReg) baseline with maximum
probability and entropy metrics.

 Standard Neural Network (NN) and temperature-scaled
NN (PlattScallingNN; Guo et al., 2017) with maximum
probability and entropy.

¢ Ensemble networks. Standard Ensembles (NNEnsem-
ble; Lakshminarayanan et al., 2017), Bootstrapped En-
sembles (BootstrappedNNEnsemble), and Anchored
Ensembles (AnchoredNNEnsemble; Pearce et al.,
2020) with entropy, standard deviation, and mutual
information.

* Bayesian Neural Networks. Bayes-by-Backprop (BBB;
Blundell et al., 2015) and Monte Carlo Dropout (MC-
Dropout; Gal & Ghahramani, 2016) with entropy, stan-
dard deviation, and mutual information.

e Neural Gaussian Process. Deep Kernel Learning
via Deterministic Uncertainty Estimator (DUE; van
Amersfoort et al., 2021) with standard deviation and
entropy.

* Density estimators. Autoencoder (AE), beta-
Variational Autoencoder (VAE; Higgins et al., 2017)
with the reconstruction error metric, and Probabilistic
PCA (PPCA) with the log-likelihood metric.

* Clustering-based Local Outlier Factor (LOF; Breunig
et al., 2000) with density scores.

Implementation and training details, selected hyper-
parameters, and performance of the models on a mortality
classification task can be found in the Appendix A and in
Ulmer et al. (2020).

We stress that the experiments are constructed on the pub-
licly available datasets eICU and MIMIC-IIT (MIMIC hence-
forth) and that the implementation of the models, and the
code for running the experiments is open source.' Therefore,
we propose to use these experiments as a new benchmark
for OOD detection on medical tabular data.

!The code for all the models and the experiments is available
at https://github.com/Pacmed/ehr_ood_detection.
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4. Results

4.1. Experiments

All the predictor models were trained and optimized for a
binary classification task of in-hospital mortality prediction
(Appendix B). Given the low rates of in-hospital fatalities,
this is a highly unbalanced classification task.

4.1.1. SCALED FEATURES

To analyze whether the current OOD detection approaches
can detect scaled samples, we compared popular techniques
on a perturbation experiment. Random features in the test
set were scaled by a factor of 10, 100, 1000 or 10,000. We
report the AUC-ROC score of the detection of the corrupted
test samples compared to the original test set (Figure 1 and
Appendix C). Many commonly used neural discriminators
(with the exception of Anchored Ensembles) coupled with
metrics such as maximum probability, entropy, and standard
deviation failed to detect the corrupted samples (Figure 1).
Moreover, the AUC-ROC score for these models actually
decreases below 0.5 as the scale factor increases indicating
that the models are assigning very low uncertainty scores to
the most corrupt inputs. The density estimators performed
better at detecting samples with scaled features. This sug-
gests that the neural discriminators have high certainty in
the areas far away from the training distribution. Similar
results were obtained on MIMIC (Appendix C).

4.1.2. OOD GROUPS

To investigate the ability of the models to flag groups of sam-
ples that they have not seen before, we separated clinically
relevant groups of patients from the training data and pre-
sented them to the models during testing. The AUC-ROC
scores on the MIMIC dataset are shown in Appendix D.
Apart from the most distinct clinical group of newborns, the
models consistently failed to detect the OOD groups. Simi-
lar under-performance was observed for the eICU dataset
(Appendix D). We also investigated whether models trained
on one dataset assign higher uncertainty scores to samples
coming from a different source. To evaluate this, we trained
the models on eICU and tested on the MIMIC data, and vice
versa (Appendix E). Again, we observed that neural dis-
criminators, on average, tend to perform worse than density
estimators (with the exception of Anchored Ensembles).

4.2. Theoretical results

After illustrating how many uncertainty estimation tech-
niques fail to discern in- from out-of-distribution data in
section 4.1, we now turn to finding a theoretical explanation
for this behavior, given in detail in Ulmer & Cina (2021).
Earlier work showed how neural discriminators with ReLU
activations behave like linear classifiers on polytopal regions

of the feature space (Arora et al., 2018; Hein et al., 2019).
We then derive how scaling single feature values in the limit
lets the softmax probabilities, as well as uncertainty scores
produced by a variety of metrics, converge to a fixed point,
regardless of the density of the training data. These insights
are illustrated in Figure 2 and lead to the following theorem,
stated informally here due to spatial constraints:?

Theorem 1 (Convergence of uncertainty in the limit)
Given a set of ReLU networks, suppose that their Jacobian
matrices with respect to the input do not contain any zero
entries. Then, whenever uncertainty is measured via either
of the following metrics

1. Max. softmax probability (Hendrycks & Gimpel, 2017)
2. Class variance (Smith & Gal, 2018)
3. Predictive entropy (Gal & Ghahramani, 2016)

4. Mutual information (Smith & Gal, 2018)

the network(s) will converge to fixed uncertainty scores
when scaling a feature of an input in the limit.

The mentioned set of ReLU networks can stem from ap-
proaches such as ensembling (Lakshminarayanan et al.,
2017; as diff. members), MC Dropout (Gal & Ghahramani,
2016; diff. forward passes) or Bayes-by-backprop (Blundell
et al., 2015; diff. sampled network parameters), all of which
we group under the umbrella of Bayesian model averaging,
as argued for by Wilson & Izmailov (2020).

5. Discussion

We refer the reader to Ulmer et al. (2020) and Ulmer &
Cina (2021) for in-depth discussion of the experimental and
theoretical findings, and we highlight here what we take to
be the most important insights.

First, the task of OOD detection on tabular data still requires
scrutiny. Perturbation of a single feature is a rather specific
way of constructing OOD, which in reality can come in a
variety of novel feature combinations. While some models
seem to perform reasonably well in the experiment dis-
played here, e.g. the density estimation models, results are
more mixed in further experiments such as those presented
in Ulmer et al. (2020) and Appendix D. For this reason, we
stress the importance of a benchmark on public data such as
the one presented here. Second, simple neural discrimina-
tors seem to be poorly equipped for OOD detection, given
their inherent tendency to generalize from seen to unseen
data. This points to the fact that different approaches should

2A precise and unabridged version and proof is given in Ulmer
& Cina (2021).
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Figure 1. Perturbation experiments on the eICU dataset. AUC-ROC of OOD detection shown for different scaling factors. Results are
averaged over n = 100 different, randomly selected perturbed features. The models that fall under the conclusions of the Theorem 1 are

marked with an asterisk.

(a) Predictive entropy of ReLU classifier.

(b) Polytopal linear regions induced by same
classifier (Arora et al., 2018).

(c) Magnitude of gradient of predictive en-
tropy w.r.t. input.

Figure 2. (a) Uncertainty of a neural classifier with ReLU activations measured by predictive entropy on synthetic data, illustrated by
increasing shades of purple with white denoting absolute certainty. (b) Polytopal, linear regions in the feature space induced by the same
classifier (as introduced by Arora et al. (2018)). (c) Norm of the gradient of the predictive entropy plotted by increasing shades of green,
showing how small perturbations in the input have a decreasing influence on the uncertainty of the network as we stray away from the
training data, creating large areas in which uncertainty levels are overgeneralized. Figure taken from Taken from Ulmer & Cina (2021).

probably get priority. We should add that density estimation
techniques also come with some shortcomings — scaling is
a well-known problem of some models in this family — and
their efficacy has been debated (Nalisnick et al., 2019). The
combination of neural discriminators with other techniques
(as in van Amersfoort et al., 2021) could be a promising
way forward.

Third, it is worth noting that ensembling may work locally:
we see in the experiments that anchored ensembles (in which
ensemble members retain a certain level of diversification
among them) seem to hold their ground. However, Theorem
1 and other experiments lead us to believe that in general
the more the ensemble members coincide the more they
misbehave with respect to OOD, so there is a trade-off

between OOD detection (where increased disagreement is
beneficial) and performance (for which less disagreement is
beneficial). Fourth, the small print of Theorem 1, namely
the conditions under which the theorem is applicable, could
serve as a point of reflection on what sort of generalization
behaviour must be prevented to enable OOD detection. It
is also still an open question whether the theoretical results
can be extended to a wider class of networks, a wider class
of uncertainty metrics or categorical features.

Finally, we remark that this line of work, albeit targeted to
medical application, does concern all kind of applications
revolving around tabular data and (unbalanced) classifica-
tion tasks, such as fraud detection from financial data or
prediction of mortgage default.
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Appendix
A. Extended Methods

The hyperparameters for all models were found using
an extensive hyperparameter search on both the eICU
and the MIMIC datasets. Hyperparameters used for NN,
temperature-scaled NN, Ensembles, MCDropout, BBB,
PPCA, and AE can be found in Ulmer et al. (2020).

For the DUE model, we followed the implementation de-
scribed in van Amersfoort et al. (2021). The final hyperpa-
rameters used for eICU were the following: the Matern 1/2
kernel function, 50 inducing points, the distance-preserving
neural network contained 4 layers, each with 256 units, the
Lipschitz coefficient was set to 0.5, and the learning rate
was 0.002. For the MIMIC dataset, the number of inducing
points was set to 20 and the learning rate to 0.004. Other
hyperparameters were the same as for eICU.

The beta-VAE models was implemented according to Hig-
gins et al. (2017). An option to perform beta-annealing (a
deterministic warm-up; Huang et al., 2018) was added as
a hyperparameter. The hyperparameters for the eICU data
were the following: both the encoder and the decoder had
one layer with 100 units, 20 latent dimensions, the learning
rate was 0.003, and the value of beta was set to 1.8 with
annealing. For the MIMIC dataset, the encoder and the
decoder contained three layers with 50 units each an 5 latent
dimensions. The beta-VAE was trained with a learning rate
of 0.005 and a beta-value of 1.6 with annealing.

B. Mortality Prediction

We trained the predictor models on a binary mortality classi-
fication task on both the eICU and the MIMIC dataset. The
final AUC-ROC scores for the models are shown in Table 1.

Both datasets have unbalanced classes. This is due to the
intrinsic nature of the problem — the in-hospital mortality
rates are low. The percentage of positive labels in the train-
ing data for the eICU and the MIMIC datasets are 12.5%
and 13.5% respectively.

C. Perturbation Experiments on MIMIC
Dataset

The ability of models to detect scaled inputs was tested on
the eICU dataset (Section 4.1.1) and the MIMIC dataset
(Figure 3). Similar to the results in the main section, neu-
ral discriminators generally perform worse at flagging the
scaled inputs and their performance tends to decrease with
greater scaling.

Table 1. AUC-ROC score for the mortality prediction task on the
eICU and the MIMIC datases. Results were averaged over 5 runs

and displayed with standard deviation.

elCU MIMIC
AnchoredNNEnsemble 0.832+0.004 0.839 + 0.006
BootstrappedNNEnsemble  0.847 4+ 0.000  0.848 £ 0.001
DUE 0.828 £0.003  0.838 £ 0.002
LogReg 0.823 +0.000 0.834 + 0.000
MCDropout 0.844 +0.001  0.847 £ 0.002
NNEnsemble 0.847 +£0.000 0.848 £ 0.001
NN 0.842 +0.002 0.847 £ 0.003
PlattScalingNN 0.844 +£0.002  0.845 £+ 0.002

D. Clinical OOD Groups

As outlined in the section 4.1.2, we selected clinically rel-
evant groups of patients and withheld these groups during
training. The models then scored the groups at test-time.

To compare a feature-wise difference of the groups and the
training data, we performed a feature-wise Welch’s t-test
(with p < 0.01). The percentages shown in the plots (Fig-
ures 4 and 5) indicate how many features were significantly
different from the features of the training set.

Note that the problem is different from the predictive perfor-
mance of the models on new data given that generalization
of models is desirable if the input is sufficiently similar.
What is being tested is the ability of models to detect new
samples.

E. Clinical Datasets as OOD

We investigated whether the models are able to recognize
samples with a different origin as described in the section
4.1.2. To this end, the models were trained on either the
eICU dataset or the MIMIC dataset and during inference,
were presented with samples from the other dataset. The
ability to flag these samples as novel is show in Figure 6.
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Figure 3. Perturbation experiments on the MIMIC dataset. AUC-ROC of OOD detection shown for different scaling factors.Results are
averaged over n = 100 different, randomly selected perturbed features. The models that fall under the conclusion of the Theorem 1 are
marked with an asterisk.
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Figure 4. OOD groups for the MIMIC dataset. The AUC-ROC scores of detecting the indicated OOD groups at test time. For each group,
its size compared to the training data is shown (size) along with a percentage of features that are significantly different from the training
set (diff). Average results over 5 runs are shown.
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Figure 5. OOD groups for the eICU dataset. The AUC-ROC scores of detecting the indicated OOD groups at test time. For each group, its
size compared to the training data is shown (size) along with a percentage of features that are significantly different from the training set
(diff). Average results over 5 runs are shown.
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Figure 6. The AUC-ROC scores of detecting new clinical datasets as OOD. The models were trained on the eICU dataset and presented
with MIMIC samples (top row), or visa versa (bottom row). The percentage of features that are significantly different from the training set
is added (diff). Average results over 5 runs are shown.



