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Abstract
We study objective robustness failures, a type
of out-of-distribution robustness failure in rein-
forcement learning (RL). Objective robustness
failures occur when an RL agent retains its capa-
bilities out-of-distribution yet pursues the wrong
objective. This kind of failure presents different
risks than the robustness problems usually consid-
ered in the literature, since it involves agents that
leverage their capabilities to pursue the wrong ob-
jective rather than simply failing to do anything
useful. We provide the first explicit empirical
demonstrations of objective robustness failures
and present a partial characterization of its causes.

1. Introduction
Out of distribution (OOD) robustness, performing well on
test data that is not distributed identically to the training set,
is a fundamental problem in machine learning (Arjovsky,
2021). This is crucial since in many applications it is not
feasible to collect data distributed identically to that which
the model will encounter in deployment.

In this work, we focus on a particularly concerning type
of OOD robustness called objective robustness (Hubinger,
2020a) which we study in the reinforcement learning (RL)
setting. Usually, when an RL model is deployed out-of-
distribution, the model either performs well or simply fails
to take useful actions. However, there exists an alternative
failure mode in which the agent pursues an objective other
than the training reward while retaining all or most of the
capabilities it had on the training distribution. We call this
kind of failure an objective robustness failure and distin-
guish it from capability robustness failures. To highlight
and illustrate this class of failures, we provide empirical
demonstrations of the phenomenon in deep RL agents—to
our knowledge, this is the first time it has been demonstrated
empirically.
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Figure 1. An agent trained to collect the coin reliably reaches
reaches the coin during training (left) but frequently skips the coin
to reach the end of the level when the coin position is randomized
at test time (right).

While capability robustness failures are concerning, ob-
jective robustness failures are potentially more dangerous,
since an agent that capably pursues an incorrect objective
can leverage its capabilities to visit arbitrarily bad states.
Our main contributions are:

• We highlight the class of objective robustness failures,
differentiate it from other robustness problems, and
discuss why it is important to address (Section 2).

• We demonstrate that objective robustness failures occur
in practice by training deep RL agents on the Procgen
benchmark (Mohanty et al., 2021), a set of diverse pro-
cedurally generated environments designed to induce
robust generalization, and deploying them on modified
environments (Section 3).

2. Objective Robustness
It is widely known that deep learning systems may fail in
unexpected ways when deployed out-of-distribution; for
example, a classifier trained on images of cows in Alpine
pastures will typically fail to recognize an image of a cow
that is taken on a sandy beach (Beery et al., 2018; Arjovsky,
2021). We focus on the reinforcement learning setting (Sut-
ton & Barto, 2018), in which a system is trained to take
actions in order to maximize a reward. OOD robustness
problems frequently arise in RL—here are a two examples:

1. A robot is trained in a simulation where data is plen-
tiful. It is then deployed in the real world, where it
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encounters subtle differences in physical parameters
(Andrychowicz et al., 2020).

2. A factory wants to use deep RL for a process control
application. The agent is trained on episodes of fixed
length. When it is deployed in the real world, the
episode never ends (there are no episode resets in the
real world), and the distribution of observations slowly
drifts over time as its context in the world changes.

2.1. Defining objective robustness

A deep RL agent is trained to maximize reward R : S ×
A× S → R, where S and A are the sets of all valid states
and actions, respectively. Assume that the agent is deployed
under distributional shift; that is, something about the envi-
ronment (for example the distribution of states) changes at
test time. If the agent now achieves low reward in the new
environment because it continues to act capably yet appears
to optimize a different objective R′ 6= R, then we say the
agent underwent an objective robustness failure. We call
R′ the behavioral objective of the agent.

We must specify what counts as a behavioral objective (for
example, we wish to avoid ascribing a behavioral objective
to an agent that simply acts randomly). To do this, we
understand the behavioral objective as equivalent to the
notion of a “goal” under the intentional stance (Dennett,
1989): a system has one if describing the system as pursuing
it is useful for predicting that system’s behavior. This rules
out e.g. an objective that is simply the indicator function
for the policy. In particular, we do not assume that the
behavioral objective is represented explicitly by the agent,
although this may sometimes be the case.

Our primary motivation for identifying this class of failures
is that objective robustness failures—failures in which sys-
tems take competent yet misaligned actions when deployed
out-of-distribution—have the potential to be particularly
dangerous. Other types of failures are bounded in the dam-
age they can do: the worst that can happen is an accident
(say, a self-driving car failing to brake). In contrast, an agent
that pursues an incorrect objective can perform arbitrarily
badly relative to the true reward and indeed becomes more
dangerous the more capable it is.

2.2. Properties and causes of objective robustness
failures

When should we expect models to to be objective robust?
We begin by identifying prerequisites for objective robust-
ness failure:

1. The training environment must be diverse enough to
learn sufficiently robust capabilities.

2. There must exist some proxyR′ : S×A×S → R that

approximately tracks the true reward on the training
distribution.

3. The proxy and the true reward come apart on the OOD
test environment.

While these are plausible necessary conditions for objective
robustness failure, they are by no means sufficient since,
by themselves, they do not guarantee that the model learns
to follow the proxy reward R′ instead of the true reward.
However, assumptions (1) and (2) are also very weak: al-
most every real-world problem requires a diverse training
environment (to achieve capability robustness), and proxies
are common in complex environments. Thus objective ro-
bustness failure depends mostly on whether the inductive
biases of the model prime it to learn a proxy that then (3)
diverges from the true objective on the test set.

What proxies then do models tend to learn? Following
Hubinger et al. (2019), we (non-exhaustively) list factors
that increase the likelihood of learning a particular proxy
R′.

• The proxy R′ is simpler than the true reward R.

• The true reward R is sparse, but the proxy R′ is dense
(Pezeshki et al., 2020).

• The true reward R is computationally hard to predict
without using the proxy, while the proxy is easily pre-
dictable.

• If R is hard to predict, then large model capacity may
make objective robustness failure less likely, because
the model is better able to model the true reward.

As an example for such proxies, consider human evolution.
While very different from SGD, biological evolution is (to
an approximation) a local optimization process that maxi-
mizes inclusive genetic fitness. Humans, however, generally
have no desire to maximize the number of our descendants.
Instead, we pursue objectives which in the ancestral environ-
ment were good proxies for fitness, such as friendship, food,
and love. This illustrates a general phenomenon: given a
challenging objective, complex environments are rife with
proxies for and sub-goals of that objective, many of which
are more dense or easier to predict. In addition, human
evolution illustrates how such proxies can come apart from
the true objective under distributional shift: in the ances-
tral environment humans were driven to eat high-caloric
foods, which in the modern world often leads to obesity. We
illustrate this sort of shift in a simple experiment in Sec-
tion 3.3 that relies on sub-goals. This suggests that objective
robustness will be a problem in complex, real-world tasks.
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3. Experiments
In this section we provide simple empirical demonstrations
of objective robustness failures.1 For example, a natural
interpretation of our results in CoinRun in Section 3.1 is that
the agent has learned a robust capability to avoid obstacles
and navigate the levels,2 but a non-robust objective, since
its behavior out-of-distribution is better described by “get
to the end of the level” than “go to the coin”.

Different kinds of failure The experiments illustrate dif-
ferent flavors of objective robustness failures. Action space
proxies (CoinRun): the agent substitutes a simple action
space proxy (“move right”) for the true reward, which could
have been identified in terms of a simple feature in its input
space (the yellow coin). Observation ambiguity (Maze):
The observations contain multiple features that identify the
goal state, which come apart in the OOD test distribution.
Instrumental goals (Keys and Chests): The agent learns an
objective (collecting keys) that is only instrumentally useful
to acquiring the true reward (opening chests).

3.1. CoinRun

In CoinRun, a platformer, the agent spawns on the left side
of the level and has to avoid enemies and obstacles to get to
a coin (the reward) at the far right of the level. To induce an
objective robustness failure, we create a test environment in
which coin position is randomized (but accessible).

The agent is trained on vanilla CoinRun and deployed in the
modified test environment. At test time the agent generally
ignores the coin completely. While the agent sometimes
runs into the coin by accident, it often misses it and proceeds
to the end of the level, as shown in Figure 1. In terms of
Section 2, the agent’s behavioral objective is not to collect
the coin, but to reach the end of the level.

3.2. Maze

3.2.1. VARIANT 1

We modify the Procgen Maze environment in order to imple-
ment an idea from Hubinger (2020b). A maze is generated
using Kruskal’s algorithm (Kruskal, 1956), and the agent
is trained to navigate towards a piece of cheese located at a
random spot in the maze. Instead of training on the original
environment, we train on a modified version in which the
cheese is always located in the upper right corner (Figure 2).

When deployed in the original Maze environment at test

1Video examples of objective robustness failures in all of the
following environments can be found here. The code for the
modified environments is available from this GitHub repository.

2After all, Procgen (Mohanty et al., 2021) was designed to test
(capability) generalization in deep RL.

Figure 2. Left: The reward (a piece of cheese) is always in the top
right of the maze. When cheese is placed randomly, it ignores it
and goes to the top right of the maze. Right: An agent is trained to
navigate to a yellow gem. In the test environment, it must choose
between a yellow star and a red gem, and it consistently navigates
to the yellow star.

time, the agent does not perform well; it ignores the ran-
domly placed objective, instead navigating to the lower right
corner of the maze as usual. The training objective is to
reach the cheese, but the behavioral objective of the learned
policy is to navigate to the lower right corner.

3.2.2. VARIANT 2

We hypothesize that in CoinRun, the policy that always
navigates to the end of the level is preferred because it is
simple in terms of its action space: simply move as far right
as possible. The same may be true for the Maze experiment
in Section 3.2.1, where the agent has learned to navigate
to the top right corner. In both experiments, the objective
robustness failure arises because a visual feature (coin /
cheese) and a positional feature (right / top right) come apart
at test time, and the inductive biases of the model favor the
latter. However, objective robustness failures can also arise
due to other kinds of distributional shift. To illustrate this,
we present a simple setting in which there is no positional
feature that favors one objective over the other; instead, the
agent is forced to choose between two ambiguous visual
cues.

We train an RL agent on a version of the Procgen Maze
environment where the reward is a randomly placed yellow
gem. At test time, we deploy it on a modified environment
featuring two randomly placed objects: a yellow star and a
red gem; the agent is forced to choose between consistency
in shape or in color (Figure 2). Except for occasionally get-
ting stuck in a corner, the agent almost always successfully
pursues the yellow star, thus generalizing in favor of color
rather than shape consistency.

3.3. Keys and Chests

This environment, which we implement by adapting Heist
from Procgen, is a maze with two kinds of objects: keys and
chests. Whenever the agent comes across a key it is added
to a key inventory. If it subsequently comes across a chest,

https://drive.google.com/drive/folders/17d2wzn7nI0Yl_TcCNOsoVg9EvnZoKHfN?usp=sharing
https://github.com/JacobPfau/procgenAISC
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Figure 3. Objective robustness failure on the ”keys and chests”
task. The agent must collect keys in order to open chests and is
only rewarded for opening chests. Left: The agent is trained on
procedurally generated mazes in which there are twice as many
chests as keys. Right: At test time, there are instead twice as
many keys as chests. The agent more highly values collecting keys
than opening chests; it routinely goes out of the way to collect all
the keys before opening any remaining chests despite the fact that
doing so offers no benefit to its actual return

the chest is opened and a key is deleted from the inventory.
The agent is rewarded for every chest it opens.

The objective robustness failure arises due to the following
distributional shift between training and test environments:
in the training environment, there are twice as many chests
as keys, while in the test environment there are twice as
many keys as chests. The basic task facing the agent is the
same (reward is only given upon opening a chest), but the
circumstances are different.

We observe that an agent trained on the “many chests” dis-
tribution goes out of its way to collect all the keys before
opening the last chest on the “many keys” distribution (Fig-
ure 3), even though only half of them are even instrumentally
useful for the true reward. Applying the intentional stance,
we describe the agent as having learned a simple behavioral
objective: collect as many keys as possible, while sometimes
visiting chests.

This strategy leads to high reward in an environment where
chests are plentiful and the agent can thus focus on looking
for keys. However, this proxy objective fails under distribu-
tional shift when keys are plentiful and chests are no longer
easily available.

4. Related Work
Reward misspecification Reward specification is the
problem of specifying a reward that captures the behavior
we want (Amodei et al., 2016; Clark & Amodei). Objective
robustness is a distinct problem: it may still fail even if the
reward function is perfectly specified.3

3Failures due to objective misspecification occur when the
model behaves in an unintended way that nevertheless scores
highly on the reward function. In contrast, in failures of objective

Out-of-Distribution Robustness Objective robustness is
a type of OOD robustness. Here, the goal is to optimize
worst-case performance over a perturbation set of possible
test domains (environments). Causes for this type of train-
test mismatch (non-exhaustively) include 1) the training
data does not characterize the true distribution (Torralba &
Efros, 2011), 2) the distribution shifts over time (Quiñonero-
Candela et al., 2009), and 3) the training or the test data are
adversarially perturbed (Huang et al., 2017; Gleave et al.,
2021; Kos & Song, 2017). Approaches that address OOD ro-
bustness include learning causally invariant representations
(Arjovsky et al., 2020; Krueger et al., 2021) and modifying
the training objective (Patrini et al., 2017).

Unidentifiability Objective robustness failures tend to
arise when there are multiple possible reward functions
that are indistinguishable from the true reward. This type
of unidentifiability is analogous to the one encountered in
inverse reinforcement learning (IRL). For example, in their
seminal paper on IRL, Ng & Russell (2000) note that identi-
fying the exact reward function an optimal agent optimizes
with its behavior is in general impossible.

5. Discussion
We have provided the first (to our knowledge) explicit ex-
amples of objective robustness failures in deep RL systems.
While deep RL practitioners may be aware that this type of
failure is possible, there has not yet been much discussion of
objective robustness as distinct from other types of out-of-
distribution robustness. We argue that objective robustness
is a natural category since, much like adversarial robustness
failures, objective robustness failures have distinct causes
and pose distinct problems. By introducing the objective
robustness problem to a broader audience, we hope to spark
interest in it as an avenue for future research.

5.1. Limitations

• Our experiments demonstrate the existence of objective
robustness failures and illustrate some of their causes;
they do not prove that they will occur in problems
of interest. We do however think that there are good
arguments for this (Section 2.2).

• In time, the objective vs. capability robustness dis-
tinction may be superseded by a categorization that
better captures the problems that occur in practice, is
more grounded in theory, or both. However, there are
different kinds of possible robustness failures, and un-
derstanding their varying causes and consequences is
important for building safe and capable AI systems.

robustness, models score poorly on the training reward because
they are pursuing an different objective.
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A. Varying how often the coin is randomly
placed in training

To test how stable the objective robustness failure is, we
train a series of agents on environments which vary in how
often the coin is placed randomly. We then deploy those
agents in the test environment in which coin position is
always randomized. Results can be seen in Figure 4, which
shows the frequencies of two different outcomes, 1) failure
of capability: the agent dies or gets stuck, thus neither
collecting the coin nor to the end of the level, and 2) failure
of objective: the agent misses the coin and navigates to the
end of the level. As the diversity of the training environment
increases, the proportion of objective robustness failures
decreases.
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Figure 4. How diverse does the training distribution need to be to
induce objective robustness? We train agents in a CoinRun envi-
ronment in which the coin is placed randomly {0, 1, 2, 5, 10}% of
the time, and keep track of how often the agent navigates to the
end of the level while ignoring the coin.

B. Implementation
All environments are adapted from the Procgen benchmark
(Mohanty et al., 2021). This benchmark is built to study
sample efficiency and generalization to within-distribution
tasks. Agents are tasked with performing well in an arcade-
like video game from pixel observations. The environments
are procedurally generated and thus diverse; to perform well,
an agent is forced to learn strategies that work in a wide
range of task settings and difficulty and cannot rely on e.g.
memorizing a small number of trajectories to solve a fixed
set of levels.

For all environments, we use an Actor-Critic architecture
using Proximal Policy Optimization (PPO) (Schulman et al.,
2017). Hyperparameters can be found in Table 1. Code to
reproduce the experiments may be found here. All mod-
els are implemented in PyTorch (Paszke et al., 2019), and
our implementation is based on a codebase by Lee (2020).
Unless otherwise stated, models are trained on 100k proce-
durally generated levels for 200M timesteps. Each training
run required approximately 30 GPU hours of compute on a

V100.

B.1. Hyperparameters

We use the Adam optimizer (Kingma & Ba, 2015) in all
experiments.

Table 1. PPO Hyperparameters
ENV. DISTRIBUTION MODE HARD
γ .999
λ .95
LEARNING RATE 0.0005
# TIMESTEPS PER ROLLOUT 256
EPOCHS PER ROLLOUT 3
# MINIBATCHES PER EPOCH 8
MINIBATCH SIZE 2048
ENTROPY BONUS (kH) .01
PPO CLIP RANGE .2
REWARD NORMALIZATION? YES
LEARNING RATE 5× 10−4

# WORKERS 4
# ENVIRONMENTS PER WORKER 64
TOTAL TIMESTEPS 200M
ARCHITECTURE Impala
LSTM? No
FRAME STACK? No

https://github.com/jbkjr/objective-robustness-failures

