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Abstract

Modeling conserved quantities like the Hamilto-
nian of a physical system provides strong induc-
tive biases for efficient learning of the underlying
dynamics. Chaotic systems, however, are sensi-
tive to tiny perturbations in the initial conditions,
such that point predictions can drastically diverge
and lead to catastrophic outcomes. In this work,
we take a first step towards quantifying uncer-
tainty in the learned dynamics of such chaotic
systems; we propose CHNN-DE which employs
Deep Ensembles, and CHNN-SWAG which em-
ploys Stochastic Weight Averaging Gaussian to
quantify uncertainty. With experiments on 3-
body pendulum systems, we show that CHNN-
DE and CHNN-SWAG are effective at providing
long-horizon predictions in chaotic systems with
well-calibrated uncertainty estimates.

1. Introduction

In engineering, accurate models are vital to keep a system
in a desired state. Predictive control uses a known model to
find a sequence of inputs that lead to these optimal states.
When there is no known or accurate model of a system,
we must perform model learning to identify how a system
changes as a function of state and input.

Chaotic systems are particularly challenging to learn as
small changes to the system’s initial state, Az, create large
variations in the state at time ¢, Az;. Specifically, the error
in a chaotic system grows exponentially as

|Az| = M |Azp],

where A is called the Lyapunov exponent. Chaotic dynam-
ics are ubiquitous in nature and engineering systems, mak-
ing accurate models and robust control of them imperative.
Sensitivity to perturbations, however, makes modeling such
systems difficult, as small errors can quickly cascade into
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large ones.

Naively applying deep learning techniques often leads to
predictive performance that degrades quickly with increas-
ing time horizon. Recent work combats compounding
errors by directly modeling conserved quantities of the
system (e.g. the Hamiltonian) (Greydanus et al., 2019;
Cranmer et al., 2020), providing desirable inductive bi-
ases for learning. Finzi et al. (2020) extends this frame-
work, introducing Constrained Hamiltonian Neural Net-
works (CHNNs) which use explicit physical constraints to
further simplify the learning problem. Through their strong
modeling assumptions, CHNNs are able to achieve to low
error over long time horizons while still giving the flexibil-
ity of learning-based approaches.

From a control perspective, however, CHNNs and simi-
lar physics-inspired models have a noticeable shortcom-
ing: they only provide point predictions. In planning and
control, quantifying uncertainty is crucial for preventing
catastrophic outcomes (e.g. hitting a pedestrian with an
autonomous vehicle). When the system is chaotic, quan-
tifying uncertainties has still greater importance, as com-
pounding errors quickly create a gap between ground truth
and predictions, which can go unnoticed without a metric
of confidence.

We propose two approaches as extensions to CHNN:
CHNN-SWAG, which applies Stochastic Weight Averaging
Gaussian (SWAG) (Maddox et al., 2019) to compute an ap-
proximate posterior distribution over the model parameters,
and CHNN-DE, which employs Deep Ensembles (Laksh-
minarayanan et al., 2017; Fort et al., 2019) to approximate
the Bayesian model average. Through experiments on a
3-body pendulum (a chaotic system), we show that both
CHNN-DE and CHNN-SWAG maintain high accuracy in
long-horizon predictions and provide well-calibrated esti-
mates of uncertainty.

2. Background
2.1. Learning dynamical systems

Differential equations and neural networks Ordinary
differential equations (ODEs) allow modeling a system’s
dz ~ Given a specification

state, z¢, by its rate of change, &,
= f(z,t), and a set of initial conditions zp, z; can

dz
dt
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be found via integration, often approximately through nu-
merical methods like Runge—Kutta (Runge, 1895; Kautta,
1901). Since the true f(z,t) can be highly non-linear,
recent work has explored using deep neural networks to
parameterize f as fy. Predictions are calculated as 2, =
ODESolve(zo, fo,t), yielding L(z, 2) for loss function L.
An optimal setting of parameters 6 is found via gradient de-
scent using the adjoint method to back-propagate through
the ODE solver (Chen et al., 2018). Thus, complex time
and state-dependent dynamics can be learned directly from
observations of the system, z;.

Hamiltonian Neural Networks Physical systems can be
expressed in terms of a more general operator that describes
the total energy, known as the Hamiltonian H(z). The time
evolution of such a system is described by (1).

dz 1o Ipjo
i JVH(z), where J = |:_ID/2 0 (1)
The state can be decomposed as z = (q,p) with gener-

alized coordinates ¢ € RP/2? and generalized momenta
p € RP/2, which implicitly encode all system constraints.
Importantly, systems governed by a Hamiltonian conserve
total energy. Greydanus et al. (2019) proposed Hamil-
tonian Neural Networks (HNNs), which learn a forward
model of the system by directly parametrizing H with a
neural network. The resulting models, therefore, conserve
energy by design.

Explicitly Constrained HNNs Finzi et al. (2020) ex-
tend the HNN framework to explicitly account for con-
straints, calling their new method Constrained Hamiltonian
Neural Networks (CHNNs). In many physical systems,
constraints have a significant ef-

l | fect on the dynamics. For exam-
L ple, an N-body pendulum con-
sists of rods of length [}, which

Iy constrain the movement of its
Mo attached masses m; (Figure 1).
CHNNSs incorporate constraints

present in the Cartesian coordi-

nate system into the Hamiltonian

of the generalized coordinates

H(z). The increased structure

Figure 1. Example pendu- provides strong inductive biases

lum with 3 masses, m;, for more efficient model learn-
and rods of length ;. ing.

In general, we can incorporate constraints into the learning
of HNNs by using Lagrange multipliers, A\. For C holo-
nomic constraints (relations between position variables)

{®(x); = 0}5_,, we can derive ¥(z) = (®, 42), and the

ODE

dz

= =7 [VH(2) + (D¥(z)) " A] (2)
where DV is the Jacobian of ¥ wrt z. We can further solve
for X in terms of only J, V#H(z), and D¥(z). See Finzi
et al. (2020, Appendix F.2) for a full derivation of the con-

strained dynamics for n-pendulum systems.

To learn the dynamics from a set of trajectories, {7}V,
with 7 = {(20, t0), ..., (27, t1)}, We parameterize H as Hy
with a neural network, and integrate through the dynamics
in (2):
fo(z,t) = J [VHg(2) + (D¥(2)) T A]

(21, ...,2%) = ODESolve(z}, fo, {to; .-, tT})
We then minimize the L; error between the ground truth
trajectory and the simulated trajectory.

3)

3. Uncertainty in CHNNs

While HNNs and CHNN s are significant developments in
learning system dynamics, they only provide point esti-
mates. Chaotic systems rapidly grow unpredictable, and
thus accounting for uncertainty is crucial in any practical
modeling task. To quantify uncertainty in such models, we
apply approximate Bayesian inference to marginalize over
the neural network parameters, 6.

CHNN-DE Following Lakshminarayanan et al. (2017),
we learn an ensemble {61, 05, . .., 0g}. To sample from the
predictive distribution we compute the trajectory for each
ensemble member 0., e € {1,2,..., E},

(849, 2(9)) = ODESolve(zo, fo,, {to,. ... t-}) (4)

We can then approximate the mean and variance of the
predictive distribution, P(2;), as the empirical mean and

variance of the sampled states, mean(égl)7 ...,2§E)) and

Var(ét(l), o éf(E)) We call this method CHNN-DE.

CHNN-SWAG Applying SWAG (Maddox et al., 2019)
to CHNN, we first learn a posterior over the model parame-
ters ¢(0) by performing SGD around a MAP estimate of the
parameters. We can then construct the predictive distribu-
tion by sampling K parameters 6, ~ ¢(6), k € {1,..., K}
and rolling out respective trajectories,

(2., 2)) = ODESolve(zo, fo, . {to,- ... t+}) (5)

We can then approximate the mean and variance of the pre-
dictive distribution as in CHNN-DE. We call this method
CHNN-SWAG.

CHNN-OU Finally, we compare our methods which use
epistemic uncertainty with a simpler approach which only
attempts to model aleatoric uncertainty. Instead of using
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(a) CHNN-OU

(b) CHNN-DE

(c) CHNN-SWAG

Figure 2. For a trajectory starting at one initial condition (dashed black line) in a 3-body pendulum, we plot the chaos (shaded gray) in the
ground-truth dynamics, using ten uniform U[—0.01, 0.01] perturbations around the initial condition, corrected for system’s rigid-body
constraints (length of pendulum’s rod), alongside its mean trajectory (solid gray). For every trace plot, we additionally show the learned
mean trajectory (solid color) and corresponding two standard deviations (dashed color). We note that CHNN-OU does not exhibit any

perceptible uncertainty.

multiple settings of the parameters, we simply have the
neural network fy output both the Hamiltonian Hy(z) and
a covariance matrix Yy (z), with

So(z) = diag(ay (2), ..., 057 (2)) (6)

where Z is the dimension of the states z;. We can
then use the Hamiltonian, Hy to derive each Z; as in
(3). Taking pg(z0,t) = 2 we can put P(z|z0,t) =
N (10(z0,t), Xg(2)). We call this baseline method with
output uncertainty CHNN-OU.

4. Experiments

In this section, we study the characteristics exhibited by
our uncertainty quantification methods. We use a 3-body
pendulum (Figure 1) to demonstrate the characteristics of
uncertainty quantification in both CHNN-DE and CHNN-
SWAG. The training set consists of segments with 7' = 25
and t7 — to = 0.75. These 0.75 second segments are sam-
pled at random from 800 complete trajectories of length
10 seconds each. We note that 10 seconds is considerably
longer timescale than the 3 second window used by (Finzi
et al., 2020), and predictions over longer windows become
increasingly infeasible in chaotic systems. Integration to
create the training data and fit the models is performed
with RK4, a 4t"-order Runge-Kutta method (Runge, 1895;
Kutta, 1901), using a time discretization of At = 0.03.

For CHNN-DE, we independently train £ = 10 ensemble
members, and for CHNN-SWAG we use KX = 10 sam-
ples from the SWAG posterior. For both models we use 3-
layer neural network with 256 hidden units and tanh non-
linearities. All neural network parameters are optimized
with Adam using an initial learning rate of 0.003 and a co-
sine schedule for a total of 50 epochs. For CHNN-SWAG,

we use an additional 20 epochs (i.e. Es = 20) to collect
the iterates used to estimate the statistics for the Gaussian
posterior All experiments have been made public'

4.1. Visualizing predictive uncertainty

For a qualitative sense of how useful our new predictive
uncertainties are, we can compare the predictive distribu-
tion generated by the learned models to the ground truth.
In order to visualize the effect of chaotic dynamics within
the ground truth system, we create 10 perturbations around
each initial condition and roll out a trajectory for each per-
turbed initial condition using the ground truth dynamics.
The spread of these trajectories captures the underlying ef-
fect of chaos and allows us to see how much of our error
might be due to an inherently difficult modeling problem.

Calibration Figure 2 displays distributions from CHNN-
OU, CHNN-DE, and CHNN-SWAG alongside visualiza-
tions of how sensitive the system is to perturbation. When
the system is more predictable, our models match ground
truth with low predictive uncertainty over a long time hori-
zon. As the system becomes more sensitive, each model’s
predictions drift away from the ground truth. CHNN can-
not directly capture this discrepancy, while predictive un-
certainty in our proposed Bayesian extensions becomes
high as the system enters a chaotic region.

As the ground truth trajectory is largely contained within
the high density region of the distribution, our predictors
provide well-calibrated uncertainty estimates. Good cal-
ibration implies downstream consumption of this uncer-
tainty (e.g. predictive control) will be well grounded, as we

'The experiments are accessible at snym/phy-unc-exps
(Biewald, 2020).


https://wandb.ai/snym/phy-unc-exps/sweeps

Epistemic Uncertainty in Learning Chaotic Dynamical Systems

&

Mean Root Squared Error
3

Figure 3. We plot the mean root squared error over time for the
trajectories generated by CHNN (black), CHNN-DE (green) and
CHNN-SWAG (red), averaged over five different initial condi-
tions, where the mean is denoted by solid lines and corresponding
two standard deviations by dotted lines.

are not significantly over-confident or under-confident. Ev-
idently, the Bayesian approach of CHNN-DE and CHNN-
SWAG provides consequential advantages over simple
maximum likelihood approaches, as CHNN-OU is consis-
tently overconfident in its estimates.

4.2. Predictive advantages

As noted earlier, one fundamental appeal of CHNNSs is their
ability to model with high fidelity over long time horizons.
Figure 3 compares the growth of error in a deterministic
CHNN model with CHNN-DE and CHNN-SWAG. We see
that error grows more slowly in CHNN-DE and CHNN-
SWAG than in a vanilla CHNN model. The advantage of
the Bayesian approach here is therefore not just the avail-
ability of useful predictive uncertainty but also improved
predicted performance overall. As with many Bayesian ap-
proaches, the gains observed here are due to averaging over
multiple settings of the parameters, causing errors in indi-
vidual models to cancel each other out.

Low data Bayesian methods are especially relevant in
applications with limited training data, as it becomes in-
creasingly difficult for a single MAP estimate to suffi-
ciently capture the data-generating process. One natural
experiment, therefore, is to examine how our application
of Bayesian methods to CHNN models affects performance
under varying the amount of training data.

We evaluate performance by calculating the geometric
mean of each prediction’s relative error. Here the scale-
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Figure 4. We plot the geometric mean of relative error, under
varying number of training data, evaluated over 25 trajectories
(95% confidence interval). Lower is better. CHNN-DE and
CHNN-SWAG show marginal improvements via the Bayesian
model average in low data, but the predictive advantage quickly
vanishes with increasing data, as expected.

independent relative error is taken to be

si i
At Zt”z

6(i,t) = (7

EH |2 + ||Z§||2
which allows us to quantify the deviation between a pre-
dicted value Z; and a ground truth value z;. The relative
error is close to one either when 2; > z, or 2 is orthogo-

nal to z;. The geometric mean is calculated as

tr
GM(i) = exp (tT 1—t0 /t_t log 6(i,t) dt) (8)

The geometric mean is used to aggregate error over time
because log errors grow more manageably. We evaluate the
error for the predictive mean of the CHNN-DE and CHNN-
SWAG models and average over initial conditions, z{.

Figure 4 shows a comparison of the geometric mean of rela-
tive error of CHNN against CHNN-DE and CHNN-SWAG
over training datasets of varying size. Following Finzi et al.
(2020), we compute this relative error over a shorter time-
scale of the first 3 seconds. We find that the Bayesian model
averaging is able to provide improvements to the error over
point estimates from CHNN, an already strong baselines,
in low data settings.

5. Summary

In this work, we present a simple extension to CHNNs to
quantify epistemic uncertainty via CHNN-DE and CHNN-
SWAG. Both methods perform at least as well as CHNNs
providing strong long-horizon predictions, while addition-
ally quantifying the epistemic uncertainty in trajectories.
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Uncertainty quantification can prove crucial for down-
stream applications like model-based control, which would
otherwise not account for potentially catastrophic trajecto-
ries.
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A. Likelihood

We can also gauge the quality of our predictor’s uncer-
tainty by examining the likelihood our models assign to
the ground truth data. Figure 5 shows the time evolution
of the log-likelihood of a given ground truth trajectory, un-
der the uncertainty of CHNN-DE and CHNN-SWAG. The
log-likelihood is computed over the 12-dimensional state
(i.e. two dimensional position and velocity for each of
the three masses in a 3-body pendulum). High likelihood
during early phase of the trajectory denotes the agreement
with the ground truth with very high certainty. As the tra-
jectory progresses, the likelihood naturally decreases. For
the learned models, however, occasionally low likelihood
values are a consequence of a disagreement with high cer-
tainty (as often in Figure 2). Eventually, for the learned
models, the likelihoods converge to similar values as the
trajectory enters chaos, indicating that the predicted uncer-
tainty covers the spread of the chaotic trajectories well, i.e.
the uncertainty is well-calibrated, as visually corroborated
by Figure 2.

Log Likelihood

-100

CHNN-DE
CHNN-SWAG

True Chaos
CHNN-P

Figure 5. This plot summarizes the degree of agreement of the
learned trajectories with the ground truth trajectory in Figure 2,
through the full-state (position and velocity for all bodies) likeli-
hood. Higher values indicate agreement with high confidence. As
the trajectory enters chaos, we find the learned models converge
to values similar to as estimated by true chaos, indicating good
calibration of the learned uncertainty estimates.

B. Estimating Chaos with Epistemic
Uncertainty

We have emphasized the correlation between variance from
underlying chaotic dynamics, and the variance of our pre-
dictive distribution via both qualitative and quantitative
methods. The exact extent to which these two quantities
are connected is worth its own discussion, which we pro-

vide here.

In general, if we want to quantify chaos, a simple approach
is to perturb the initial conditions, and observe how quickly
trajectories diverge. With a learned model, we can use the
model to roll out perturbed initial conditions, and thereby
get an estimate of chaos in the learned system. We refer to
this method as chaos by rollouts (CR). We denote perturba-
tions through a method using the suffix “-P”, for instance
CHNN-P denotes uncertainty estimated by perturbed initial
conditions through a learned CHNN model.

In the limit of data, the magnitude of chaotic dynamics in
the learned model should approach that of the underlying
system. When we learn a model with well-calibrated uncer-
tainty, however, the model’s uncertainty estimates should
also capture the magnitude of chaotic dynamics, as the
model must spread density over all the outcomes that occur
in practice. We can therefore identify chaos by an increase
in the predictive variance of the model, and the samples
from predictive distribution should diverge at a similar rate
to trajectories with perturbed initial conditions. We call
this method chaos by uncertainty (CU). Both CHNN-DE
and CHNN-SWAG belong to this family of methods.

We compare these two approaches to quantifying chaos
(CR and CU) in Figure 6. Both approaches evidently yield
good estimates of the underlying chaos. In the case of CR,
this result is not all that surprising, as we are able to learn
a reasonably accurate model of dynamics that approaches
the ground truth. The fact that CU reflects chaos to an al-
most equivalent extent, however, is quite significant, as us-
ing uncertainty estimates will often be much more practi-
cal than rolling out perturbations in practice. Although the
computational demands are similar, design choices about
the distribution of the perturbations will have significant
consequences, whereas reasonable epistemic uncertainties
are available without additional choices once the model is
learned.

Rate of divergence It is notable that in Figure 2 and Fig-
ure 6, that the predictive uncertainty increases not only
around the same time chaotic divergence emerges, but also
at a similar rate. We further verify the similarity of rates by
approximating the Lyapunov exponent in both cases. Fig-
ure 7 shows a linear fit to log distance between trajectories.
The slope of this line approximates the Lyapunov exponent.
A detail of note here is the reduced time horizon for the fits
presented in Figure 7, in comparison to Figure 2. The error
in a chaotic system will eventually asymptote, such that it
is no more predictable. For these plots, we are most inter-
ested in quantifying the transition into chaos, rather than
chaos itself. Therefore, we pick a time-scale which is most
faithfully depicts the region of transition into chaos.

From Figure 7, we find that perturbed trajectories from
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(a) CHNN-P

Body 3 | Dimension x Body 3 | Dimensiony
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(b) CHNN-SWAG

Figure 6. Similar in spirit to Figure 2, we visualize the trace
plots for one initial condition of a 3-body pendulum, using uni-
form U[—0.01,0.01] perturbations and the subsequent chaos
by rollouts (CR) through a CHNN, denoted as CHNN-P. We
skip CHNN-DE as the results are comparable to CHNN-SWAG.
CHNN-SWAG mirrors the chaos through uncertainty quite well.

—12+

Log Average Distance
I

Figure 7. A linear fit to the log average distance between trajec-
tories (LAD) per timestep. Blue shows the LAD and fitting for
10 trajectories integrated from perturbed initial conditions using
the ground truth system. Red shows the LAD and fitting for 10
samples from the predictive distribution of a SWAG model.

the ground truth model and samples from a SWAG model
yield nearly parallel lines, and therefore nearly identical
exponents. Consequently, this implies that the rate of er-
ror growth is the same between methods in comparison.

The offset, as compared to the true chaos, qualitatively in-
dicates the timescale at which the learned method believes
to have entered chaos. We present additional line fittings in
Appendix F. While this method is by no means an exhaus-
tive proof of the quality of learned models, it successfully
demonstrates that chaos by epistemic uncertainty (CU) may
be a viable approach.

To avoid clutter, we skip plotting results for CHNN-DE as
they closely resemble the results for CHNN-SWAG.

C. Predictive advantages

Noisy data Alternatively, we might expect that Bayesian
methods will be beneficial when data is corrupted with ob-
servation noise. Because it does not explicitly model un-
certainty, CHNN might overfit to such noise, whereas our
proposed variants are more capable of capturing inherent
uncertainty as part of the prediction. To test this hypothe-
sis, we added independent zero-mean Gaussian noise with
standard deviation « to the ground-truth states z; for mul-
tiple values of cv. As above, we use the geometric mean of
the relative error to evaluate performance across the modi-
fied training datasets.

Figure 8 shows a comparison of CHNN with CHNN-DE
and CHNN-SWAG. We observe that CHNN-SWAG and
CHNN-DE may often perform marginally better using the
Bayesian model average under corrupted data. Noise cor-
ruption in the low data regime also leads to similar perfor-
mance graphs, and are omitted for being redundant. Learn-
ing the dynamics becomes much harder with noise, as the
inductive biases afforded by the Hamiltonian are violated.
The advantage is potentially diminished by poor perfor-
mance on certain trajectories. While the difference remains
little for a 3-body pendulum, this is subject to further inves-
tigation on more complex chaotic systems.

C.1. Comparing CHNN-SWAG and CHNN-DE

We have focused primarily on comparing CHNN-DE and
CHNN-SWAG against baseline methods (CHNN, CHNN-
OU) without providing much comparison between the two
methods. Looking at Figures 2, 5, 3, 4 and 8, we see that
CHNN-DE and CHNN-SWAG exhibit very similar perfor-
mance across the board. Because these models actually
incur very different computational cost, this result is sig-
nificant. In deep ensemble methods we must train £ inde-
pendent models, leading to computation that scales linearly
with the size of the ensemble. In SWAG, by contrast, we
only need to train one model and perform gradient steps
around its optimum. If the predictive results are nearly
identical for these two models, it is clear that SWAG will
be favorable in most applications.
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Figure 8. Under different levels of additive Gaussian noise cor-
ruption, we note the geometric mean of the relative error over 25
evaluation trajectories (95% confidence interval). Lower is better.
CHNN-DE and CHNN-SWAG present marginal advantages via
Bayesian model averaging. The Hamiltonian is violated, making
the learning much harder even for small perturbations. We note
that training diverges at higher noise levels.

D. Additional Trace Plots

We show additional trace plots for a 3-body pendulum in
Figures 9 to 11. In each of these plots, we show the
ground truth trajectory for a single initial condition, the
chaotic behavior generated by tiny perturbations around
the same initial condition, and the predictive uncertainty
generated by trajectory rollouts from both CHNN-DE and
CHNN-SWAG. We see that the predictive uncertainty is
well-calibrated for both degrees of freedom (i.e. dimen-
sion “x” and “y”’) over a long-horizon of 10 seconds. We
reiterate that the training happens only over randomly se-
lected smaller chunks equivalent to a total horizon length
of 0.75 seconds.

In Figures 9 to 11, we further notice that the predictive un-
certainty aligns well with the region where chaos kicks in.
We emphasize that we do not model chaos explicitly, and
this behavior is learned entirely from the data alongside the
inductive biases embodied in the Hamiltonian.

E. Relative Error

We evaluate the performance using relative error as de-
fined in (7). Figures 12 and 13 show plots for more evalua-
tion trajectories. We see that both CHNN-DE and CHNN-
SWAG are similarly competitive.

F. Additional slope fits

Plots fitting a line to the log average distance (LAD) of
trajectory for four other initial conditions are shown in Fig-

@)y

Figure 9. For the first mass in a 3-body pendulum, we visualize
the true trajectory (dashed black line) alongside two standard de-
viations (gray region) of the trajectories generated by a symmet-
ric uniform perturbation U[—0.01,0.01] around the true initial
conditions. (Left) The uncertainty in trajectories generated by
CHNN-DE is represented by the mean trajectory for 10 runs (solid
blue line), with two standard deviations (dotted blue line). (Right)
The uncertainty in trajectories is similarly plotted for CHNN-
SWAG in red. Evidently, both methods provide well-calibrated
long-horizon uncertainty estimates.

(i) y

Figure 10. These figures are similar in spirit to Figure 9, but trace
the uncertainty in trajectory for the second mass in a 3-body pen-
dulum as generated by (Left) CHNN-DE, and (Right) CHNN-
SWAG.

ure 14
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(i) y

Figure 11. These figures are similar in spirit to Figures 9 and 10,
but trace the uncertainty in trajectory for the third mass in a 3-
body pendulum as generated by (Left) CHNN-DE, and (Right)
CHNN-SWAG.
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Figure 12. We compute the relative error (as discussed in Ap-
pendix E) for 10 independent trials. The solid gray curve rep-
resents the mean relative error of the perturbed initial conditions,
with two standard deviations shaded. We make the same com-
putations for both CHNN-DE (blue) and CHNN-SWAG (red),
where the two standard deviations are bounded by respective dot-
ted lines. We see that both methods perform similarly over longer
timescales. The two plots (i) and (ii), correspond to different ini-
tial conditions.
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Figure 13. These figures show the growth of relative error for two
different initial conditions (i) and (ii), similar in spirit to Fig-
ure 12.

Log Average Distance
Log Average Distance

Log Average Distance
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Figure 14. Linear fits of log average distance between trajectories
vs. time. (blue) LAD and linear fit for trajectories from 10 per-
turbed initial conditions integrated forward using the ground truth
model. (red) LAD and linear fit for 10 trajectories sampled from
the predictive distribution of a SWAG model.



