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Abstract
In many practical applications (e.g., medical imag-
ing), we are often concerned not only with the ac-
curacy, but also with the interpretability of a pre-
dictive model trained on high-dimensional data,
such as its ability to identify a sparse subset of
invariant (robust) predictors, generalizing across a
wide variety of datasets affected by spurious noise
(e.g., key factors related to a disease, across dif-
ferent patients and hospitals). Towards this goal,
we explore here a combination of the sparsity-
inducing l1 and l2 regularization with the recently
proposed approach for robust predictive modeling,
Invariant Learning Consistency. We investigate
the ability of the combined approach to identify
robust sparse predictors, and demonstrate promis-
ing results on several datasets, including synthetic
data, the MNIST benchmark, and a functional
MRI dataset. Our approach tends to improve
the robustness of sparse models in practically all
cases, albeit with varying degrees of success and
under certain conditions.

1. Introduction
In recent years, there has been a surge of interest in the deep
learning community towards better understanding which
aspects of deep network models allow them to better gen-
eralize to test data drawn from distributions different from
the one on which these models were trained - the problem
commonly referred to as out-of-distribution (OoD) gener-
alization. A specific focus is on methods and models that
aim to disentangle the true causal predictors from the possi-
bly many spuriously correlated ones, often present in high-
dimensional data. (Arjovsky, 2020; S Chandra Mouli, 2021;
Nagarajan et al., 2021; Ahuja et al., 2010; Arjovsky et al.,
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ment of Psychiatry, Montreal, Quebec, Canada. Correspon-
dence to: Amin Mansouri, Sean Spinney, Amin Memar-
ian <amin.mansouri@mila.quebec, sean.spinney@mila.quebec,
amin.memarian@mila.quebec>.

Presented at the ICML 2021 Workshop on Uncertainty and Robust-
ness in Deep Learning., Copyright 2021 by the author(s).

2020).

One of the recently proposed methods, Invariant Learning
Consistency (Parascandolo et al., 2020), aims to improve
the model robustness by choosing gradient steps that are
consistent across different data points, and are more likely
to arrive at solutions (models) consistent across different
data distributions, thus achieving better OoD generalization.
Herein, we build upon this approach, applying it to the prob-
lem of learning robust sparse predictive models which are
structurally consistent across a range of data distributions,
in terms of high overlap across the sparse feature subsets
selected.

1.1. Objectives

We propose to combine sparse regularization (e.g., Lasso
(Tibshirani, 2011), Elastic Net (Zou & Hastie, 2005)) for
graph structure selection when learning predictive models
and Invariant Learning Consistency (ILC,(Parascandolo
et al., 2020)), a recently proposed approach for imposing
higher levels of consistency/stability of the parameters in a
neural network (or other predictive models) and shown to im-
prove out-of-distribution generalization and consistently out-
perform the popular IRM approach (Arjovsky et al., 2020)
for invariant/robust representation learning.

How do we learn a structure? We know that l1 regularization
is conducive to getting a sparse set of weights. We apply
sparse regularization in order to select the most relevant
links in a feedforward neural network. But how does this
relate to causation? Any neural network could be equiva-
lently considered as a deterministic Bayes net. If we impose
sparsity by having a large l1 regularizer, then we get a sub-
set of nodes in this graphical model but this could not be
conceived as a causal graph. However, l1 regularization
won’t necessarily return the same sparse representation for
each round of training. In other words, imposing sparsity
alone won’t probably yield a true causal model, rather, each
time we get a different set of sparse selectors. This is the
advantage of ILC: by forcing agreement between gradient
updates, we suspect it will result in consistent and causal
sparse representations.
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2. Methodology
2.1. Invariant Learning Consistency

Consider a collection of datasets {De}e∈E with |E| = d
and De = {(xei , yei )| i = 1, . . . , ne}. The subscript e ∈ E
representing the different environment from which the data
points stem from. With these environment subset of the
training data, we can define the loss for one environment:

Le(θ) :=
1

|De|
∑

(xe
i ,y

e
i )∈De

`(f(xei ; θ), y
e
i ); (1)

Using the new loss with respect to the environment defini-
tion, we can define the new ILC-regularized loss function
proposed in (Parascandolo et al., 2020):

LILC(θ) := Eθ∼p(θ)

[
1

|E|
∑
e∈E
Le(θ)

]
− λ · ILC(θ) (2)

Here the regularization factor ILC(θ) reflects the consis-
tency score of a given gradient across all environment. This
means that if the neighborhood of the minima is not con-
sistent across environments, it is probably not a consistent
minima and it doesn’t relate to an invariant mechanism.
Notice that λ adjusts our desire of predictive power (ERM
(Vapnik, 1992)) and invariance (ILC), if λ = 0 we get back
to the classic gradient descent (gradients are averaged and
agreement among them will not be considered.) and λ > 0
means we care about finding invariant mechanism.

AND-Mask On top of the new ILC-regularized loss, the
paper introduces the AND-mask. The regularization term
needs not to be explicitly added to the loss function. We can
update the model by evaluating if the gradient directions
(sign) are consistent across all environments and take the
optimization step in those directions. If a component of the
gradient has a majority of the same sign above a certain
threshold τ ∈ [0, 1] the component is left as is, if not, then
the component is zeroed-out. Mathematically, the mask mτ

for a given component j is given by:

[mτ ]j = 1

[
τd ≤

∣∣∣∣∣∑
e

sign([∇Le]j)

∣∣∣∣∣
]

(3)

where d = |E| is the number of environments in the batch.
Finally we have the final definition of the masked-ILC-
regularized gradient:

∇θLm-ILC(θ) = mτ �∇θL(θ) (4)

Note that the notion of environments is very general and
could be interpreted differently in various settings. In (Paras-
candolo et al., 2020) they treat every single sample as its
own environment, and we follow the same convention.

2.2. Evaluation

In order to assess the quality of the improvement in recover-
ing consistent estimators, we use the following metrics and
motivate their relevance in evaluating the ILC algorithm:
test accuracy, and an overlap score for the MNIST exper-
iment, which measures the consistency of learned sparse
representations across environments. Together we can com-
pare the predictive power (test accuracy) with robustness.

3. Experiments
3.1. Synthetic Dataset

Using a procedure inspired by the original paper (Paras-
candolo et al., 2020), we simulate a binary classification
dataset with weak invariant predictors across samples (envi-
ronments). LetX ∈ RN×D and y ∈ {0, 1}N be a Bernoulli
random variable, where N is the number of samples and D
the number of predictors. We assume the data is generated
according to the following:

εn ∼ N(0, σ2),∀n = 1, ..., N

yn =

{
1 βRXn,ΓR

+ βSXn,ΓS
+ βIXn,ΓI

+ εn > 0
0 0

where we consider that β = {βR;βS ;βI : βS � βI} are
the coefficients defining the relationship between X and y.
ΓR refers to completely random valued columns (features),
ΓS refers to columns that contain spurious features but are
strong (have high values), and ΓI refers to columns that
are invariant, but are weak (have lower values). βR, βS , βI
are the coefficients determining the values for each of these
column sets. That is, for every n we have that βI,n 6= 0
reflecting the fact that the invariant features of Xn have non-
zero coefficients across environments by definition. The
set R = {k ∈ D; k 6∈ {ΓS ,ΓI}} represents the set of all
the random predictors in X (no association to y; i.e. βR is
random noise).

Note that here ΓR := {1, 2, 3, 4} and ΓI := {5}, and there
is no added noise to X in (1). The error is drawn from a
normal distribution for simplicity (i.e. probit). An example
of such a dataset is given in the appendix.

3.2. MNIST

We divide the training set of MNIST into two environments,
and keep the test set for evaluating the predictive power of
learned sparse representations from training environments.
For this experiment, the environments are created by split-
ting the training set into two evenly shuffled subsets with
images and labels corresponding to the 10 digit classifica-
tion problem. Then we train a sparse multiclass logistic
regression on the two environments on a range of values
for the tuple (l1, l2, τ ), where l1, l2 denote the coefficient
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for l1, l2 regularization terms, and τ denotes the agreement
threshold among gradients (see section 2.1). So our model
would be an Elastic Net regularized network with gradients
being computed according to the AND-mask. Evaluation
metrics were presented in 2.2. Overlap score is calculated
by normalizing the number of weights that are nonzero and
have the same index (after rounding to 0.001) in the two
sparse representations (obtained from each split), by the
number of non-zero weights.

Figure 1. ILC is applied after regularization. Each color corresponds
to a value of l1 coefficient and fixed l2, and shows the behavior of
sparse representation’s consistency (overlap score) averaged over all
digits.

Figure 2. ILC is applied after regularization. Each color shows the
trend of test accuracy for varying l1 values, with fixed l2, over in-
creasing τ .

3.3. fMRI

The dataset is composed of 38,700 3D MRI brain images,
each of dimension 53x63x52, taken during a task where
subjects must either go or stop following a stimulus that is
viewed on a screen directly in front of them. Each subject is
scanned three times over a period of five years. The objec-
tive of this experiment is to train a model that can predict
the event which is a combination of what the subject sees

and the action taken, while being invariant to the inherit
noise involved in this high dimensional data (53x63x52 =
173,628 variables). We propose to use a fully connected sin-
gle hidden layer network with both l1 and l2 regularization
such that the recovered sparse model represents the causal
graph of brain activation for these events. We compare this
model with the same setup, but with ILC applied to enforce
invariance across different sampled scans. Data from sub-
jects and the first two timepoints are shuffled together and
we test generalization by evaluating the model on the third
timepoint from the dataset.

4. Results
4.1. Synthetic

For the sake of brevity, we review the main results and
mention interesting auxiliary findings observed through ex-
perimentation. First, we note that agreement threshold has a
significant impact on the test set performance of ILC, Figure
3. There is considerable improvement in out-of-distribution
accuracy when using ILC (agreement ∈ 0.2,0.4), and we
note the sharp rate of increase in test accuracy in the first
epochs following the onset of ILC.

Figure 3. Grey vertical line indicates when ILC is turned on.

Setting the agreement threshold to 0.4, we run additional ex-
periments (Appendix A.2) in order to compare performance
under different experimental setups (high-dimensionality
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Figure 4. ILC was turned on half way through training. Note that
an agreement threshold of 0 means only Adam optimization is
used.

and large number of environments, high-dimensionality and
small number of environments). The conditions when ILC
outperforms traditional regularized Adam is when the num-
ber of environments is greater than or equal to the dimension-
ality of the feature space. For the details of hyperparameters
refer to appendix 1.

4.2. MNIST

Results for MNIST using sparse logistic regression are
shown in Figures 1-2. Table 2 in the appendix contains
the hyperparameters that we have trained our environments
on. It should be noted that the lack of distributional shift
in MNIST is suboptimal for using invariant representations
(see appendix fig. 6 for the measurement of distribution
shift.). Thus OoD performance in this setting is not much
meaningful and this experiment only serves to showcase the
effect of ILC on robustness, not OoD generalization. With
that in mind, our findings are as follows:

The overlap score on its own is not very interesting. It be-
comes valuable when it enables robust prediction (good ac-
curacy). In figures 1,2 for large l1 coefficient and increasing
agreement threshold, we see that more consistent sparse rep-
resentations have been achieved at the expense of accuracy,
i.e. very sparse representations yet with good predictive
power on the test set. This suggests that we have achieved
sparse and invariant predictors in the case of MNIST that
has very small distribution shift (??. Thus we are much
looking forward to promising improvements in cases where
meaningful distribution shifts occur. As an initial step, we
observed such improvements with our synthetic data (See
4.1).

Late start of ILC: We observed that applying this kind of
gradient alignment (AND-masking) should not be from the
very first epochs. The reason is that masking all gradients in
the initial stages where no meaningful direction has been tra-
versed would result in learning nothing and getting stuck in
a plateau far from the minima, so we start masking gradients
close to the middle of the training.

4.3. fMRI

The results for the fMRI experiment can be found in Fig-
ure 4. There is no obvious set of hyperparameters which
achieves good classification scores across the five classes,
and we note that the volatile nature of the accuracy is due to
the imbalanced distribution of classes across batches, which
was not controlled for in this case (see Table 3). Considering
that we find poor results even with just ElasticNet without
ILC (thresh=0), we should not expect ILC to perform better
since without any learned useful features we cannot enforce
invariance. The complexity of brain fMRI data is very high
(the number of voxels is on the order of 100000), and we
have approached this challenging problem with only a single
fully connected layer network (with the motivation of find-
ing a deterministic causal Bayes net). These results do not
rule out the possibility for ILC to improve our understanding
of the sparse predictors for brain activities, but exploring
more complex architectures may yield better results and is
the focus of future work.

5. Conclusion
In this work, we extended the original ILC experiments
to a larger set of synthetic experiments, outlining failure
and success modes. Beyond this, we applied the method
to the popular MNIST dataset and a much more difficult
task of predicting events using voxel activations for an
fMRI task. More specifically, we showed that for the case
of MNIST ILC had a meaningful impact in finding sparse
predictors that also contribute to better OoD performance.
The synthetic experiments showed that when the number of
environments is large compared to the feature space, ILC
outperforms ElasticNet. Finally, we found that ILC did
not perform significantly better for fMRI by a noticeable
margin, however there is a number of considerations
which may improve these results. For example, given
the insights gleaned from the synthetic dataset, using
more environments may benefit ILC especially given
the very high dimensionality involved in fMRI. As
such, we conclude that ILC should not be used blindly
with the expectation of improving OoD performance
and sparse variable selection for all datasets, but these
experiments suggests an important relationship between
the number of environments and the dimensionality of
the feature space, as well as the strength of l1 regularization.
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A. Synthetic task
A.1. Example of synthetic dataset

Below is an example of X where N = 4, D = 5:

X4,5 =


3 0 0 0 0.3
0 0 0 0 0
0 0 3 0 0.3
0 0 0 0 0

 ; y4 =


1
0
1
0

 (5)

A.2. Hyperparameters for training sparse logistic
regression on the synthetic dataset

Elastic Net Elastic Net + ILC
log L1 Regularization 1e-4 1e-4
log L2 Regularization 1e-4 1e-4
Agreement Threshold 0 [0.2,0.4,0.7,0.9]

Table 1. Hyperparameters used for training. Optimizer in all cases
is Adam, and parameters for optimizers are default: lr=0.001,
b1=0.9, b2=0.999. For each experiment, the number of true causal
factors was set to 5.

A.3. Additional results:

Effect of late starting ILC 5.

Figure 5. Grey vertical line indicates when ILC is turned on. ILC
performs best when the number of predictors is close to or greater
than the number of environments.

https://proceedings.neurips.cc/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
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B. MNIST task
B.1. Hyperparameters for training sparse logistic

regression on the two environments on MNIST

Elastic Net Elastic Net + ILC
log L1 Regularization [-1,-2,-3] [-1,-2,-3]
log L2 Regularization [-3,-4,-5] [-3,-4,-5]
Agreement Threshold 0 [0.2,0.4,0.5,0.7,0.9]

Table 2. Hyperparameters used for training, overall there are 54
settings. Optimizer in all cases is Adam, and parameters for op-
timizers are default: lr=0.001, b1=0.9, b2=0.999, see below for
samples of the sparse representations learned.

B.2. Sparse representations achieved for each digit in
several sets of hyperparameters

Each row corresponds to an environment or MNIST train
split.

Figure 6 shows that entropy of the predicted class on test set
is higher than training set in each environment. However,
there is no significant distribution shift across environments.

Figure 6. Entropy of of the predicted class for each sample in
the test and train batches for two environments after 100 epochs
with ILC turned on after epoch 50. The probabilities used for
computation were averaged over all batches of size 10000.

C. fMRI task
The task analyzed in this work is the stop-signal task and
refer the reader to previous work which details the same
methodology used for our dataset (Li et al., 2006). The
scans were gathered from three different time points for each
subject. There are five distinct events which are used for
the classification task and they are: go-success, go-toolate,
go-wrong, stop-failure, and stop-success. The data was
normalized using z-normalization. The data of subjects from
the first two time points were concatenated and shuffled for
the training set. The data of the last time point was used for
test set. Each data sample was considered an environment in



Identifying Invariant and Sparse Predictors in High-dimensional Data

our experiments. There are other curation of environments
that could yield more meaningful results, e.g., considering
data from each time point as an environment.

C.1. Distribution of classes

Training Set Test Set
go-success 4619 2559
go-toolate 293 68
go-wrong 363 73

stop-failure 851 447
stop-success 864 453

Table 3. The number of samples used in training and test set be-
longing to each class. As we can see the classes are imbalanced.


