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Abstract

Among the various options to estimate uncertainty
in deep neural networks, Monte-Carlo dropout is
widely popular for its simplicity and effectiveness.
However the quality of the uncertainty estimated
through this method varies and choices in archi-
tecture design and in training procedures have to
be carefully considered and tested to obtain sat-
isfactory results. In this paper we present study
offering a different point of view on the behav-
ior of Monte-Carlo dropout, which enable us to
observe a few interesting properties of the tech-
nique to keep in mind when considering its use
for uncertainty estimation.

1. Introduction
The increasing interest in the deployment of deep learning
solutions in real safety-critical applications ranging from
hearthcare to robotics and autonomous vehicles is making
apparent the importance to properly estimate the uncertainty
of the predictions made by deep neural networks (Kendall
et al., 2017; Loquercio et al., 2020).

While most common neural network architectures only pro-
vide point estimates, uncertainty can be evaluated with
Bayesian neural networks (BNNs) (Denker & LeCun, 1990;
MacKay, 1992) where the deterministic weights used in the
majority of neural networks are replaced with distributions
over the network parameters. Although the formulation
of BNNs is relatively easy in theory, their use in practise
for most complex problems is often unfeasible due to their
need to analytically evaluate the marginal probabilies dur-
ing training which becomes quickly intractable. Recently,
variational inference methods have been proposed as a prac-
tical alternative to BNNs, but most of these formulations
requires double the number of parameters of a network to
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represent its uncertainty which leads to increased compu-
tational costs (Blundell et al., 2015; Gal & Ghahramani,
2016).

Another very popular option to model uncertainty in deep
neural networks is the use of dropout as a way to approx-
imate Bayesian variational inference (Gal & Ghahramani,
2016). The simplicity of the key idea of this formulation is
one the main reasons for its popularity: by enabling dropout
not only in training but also during testing, and by doing sev-
eral forward passes through the network with the same input
data, one can use the distribution of the outputs of the differ-
ent passes to estimate the first two moments (mean and vari-
ance) of the predictive distribution. The mean is then used
as the estimate, and the variance as a measure of its uncer-
tainty. This technique, called Monte-Carlo dropout (MCD),
has proved effective to, e.g., increase visual relocalization
accuracy (Kendall & Cipolla, 2016) and semantic segmenta-
tion performance on images (Kendall et al., 2017). Despite
its success and simplicity however, it has been recognized
that the quality of the uncertainty estimates is tied to pa-
rameter choices which need to be calibrated to match the
uncertainty (Osband et al., 2016; Pearce et al., 2018; Boluki
et al., 2020; Caldeira & Nord, 2020). However, when using
MCD in practical applications, architectural choices like
where to insert the dropout layers, how many to use, and the
choice of dropout rate are often either empirically made or
set a priori (Kendall et al., 2017; Jungo et al., 2018; Verdoja
et al., 2019), leading to possibly suboptimal performance.

In this work, we conduct a study providing some obser-
vations both in theory and through experiments over the
behavior of MCD. The main contributions of this work
are a theoretical analysis over the behavior of MCD on a
simple single-layer linear network, extending and correct-
ing the discussion in (Osband, 2016), and an experimental
demonstration that the properties found in theory apply to
bigger non-linear networks as well. In the discussion, we of-
fer different intuitions over architecture design and training
choices for networks using MCD for uncertainty estimation.

2. Behavior of MC Dropout
In this section we expand and correct the intuitions first
presented in (Osband, 2016) over the behavior of MCD.
In that work, the author conducted a similar analysis but
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commented on the results only partially. Here we correct
some imprecisions in the way they computed the optimal
weights and analyse the results further. To this end, let us
consider a single-layer linear network

f =

K∑
k=1

dkwk (1)

with weights wk ∈ R and dropouts dk ∼ Ber(p), i.e.,
a Bernoulli distribution with success probability p. To
note that here p refers to P (dk = 1), while most dropout
implementations require a dropout probability parameter
pd = P (dk = 0) = 1− p.

Assuming all weights to converge to the same value w,
which is to be expected when using dropout, then

E [f ] = E

[
w

K∑
k=1

dk

]
= wE [B(K, p)] =

= wKp

Var [f ] = Var

[
w

K∑
k=1

dk

]
= w2 Var [B(K, p)] =

= w2Kp(1− p)

(2)

where B(K, p) is a binomial distribution with K trials and
success probability p.

Following (Osband, 2016), given a ground-truth
{y1, . . . , yn} with average ȳ :=

∑n
i=1 yi/n, minimizing

the mean squared error (MSE) from the ground-truth means
finding the minimum of

E
[
(f − ȳ)2

]
= E

[
f2 − 2fȳ + ȳ2

]
= E

[
f2
]
− 2ȳE [f ] + ȳ2

= Var [f ] + E2 [f ]− 2ȳE [f ] + ȳ2

= w2Kp(1− p) + w2K2p2 − 2ȳwKp+ ȳ2

= w2Kp(Kp− p+ 1)− 2ȳwKp+ ȳ2

(3)

This can be achieved by solving

d

dw
E
[
(f − ȳ)2

]
= 0

2wKp(Kp− p+ 1)− 2ȳKp = 0

w(Kp− p+ 1)− ȳ = 0

(4)

which means the optimal weight is

w =
ȳ

Kp− p+ 1
=

ȳ

K(1− pd) + pd
(5)

Consequently, combining Eq. (2) and Eq. (5), we find that

Table 1. Comparison of single-layer network experiment results
versus the thoeretical expectation from Eqs. (5) and (6)

Thoeretical Experimental
pd Dataset w Var [f ] w Var [f ]

0.2 Y′ 0.025 0.050 0.025 0.058
0.2 Y′′ 0.025 0.050 0.026 0.076
0.5 Y′ 0.040 0.199 0.040 0.214
0.5 Y′′ 0.040 0.199 0.040 0.249

at convergence:

E [f ] =
Kpȳ

Kp− p+ 1
=

K(1− pd)ȳ

K(1− pd) + pd

Var [f ] =
Kp(1− p)ȳ2

(Kp− p+ 1)2
=

Kpd(1− pd)ȳ2

(K −Kpd + pd)2

(6)

From Eq. (6), a few observation can be drawn:

1. while one would expect E [f ] = ȳ, the expected output
of the network is actually introducing a bias. For big
network however, this bias is negligible, since Kp ≈
Kp− p+ 1;

2. the size of the variance of the posterior distribution
generated by MCD on this simple network depends
on the interaction between the dropout rate pd and the
model size K;

3. the posterior distribution has no dependence on the
amount of data n, nor the observed variance in the data,
which means that it does not concentrate as more data
is gathered;

4. finally, the variance of the posterior distribution is pro-
portional to ȳ2, i.e., the bigger the value to be estimated,
the bigger the estimated model uncertainty.

While we demonstrate here in theory that these properties
of MCD exist on a very simple network, proving them fol-
lowing a similar thoeretical process on bigger networks
becomes quickly unfeasible.

For this reason, to try to understand how these interaction
work on bigger more realistic networks, we run different
experiments, which we will present in the following section.

3. Experiments
To verify that the properties found in Section 2 hold true
even for bigger non-linear networks, we created the suite of
experiments we report in this section. These experiments
have been implemented in pytorch v0.3.01.

1Source code for the experiments presented here is available at:
github.com/aalto-intelligent-robotics/mc-dropout-notebooks

https://github.com/aalto-intelligent-robotics/mc-dropout-notebooks
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Figure 1. Ground-truth distributions (a, b) and corresponding
MCD output distributions for single-layer linear networks with
pd = 0.2 (c, d) and pd = 0.5 (e, f) respectively.

3.1. Single-layer linear network

In this first experiment we want to empirically verify the
theoretical behavior observed in Section 2. In particualar,
we implemented two versions of the single-layer linear net-
work in Eq. (1) with K = 500, one with pd = 0.2 and
one with pd = 0.5 respectively. Once more, note that the
dropout probability pd = 1 − p. We created two ground-
truth datasets Y′ = {y′1, . . . , y′n} and Y′′ = {y′′1 , . . . , y′′n}
with n = 3200, y′i ∼ N (10, 1), and y′′i ∼ N (10, 10). We
trained both networks on both datasets for 600 epochs with
MSE loss and adam optimizer. As a side note, training with
MSE holds the same results as training with log-likelihood,
since the minimum of the two losses is in the same position
in this case. After training, we run multiple forward passes
of the networks with dropout active to obtain one million
samples to empirically estimate Var [f ].

In Table 1, we can see that the values for w and Var [f ]
found experimentally match the theoretical ones computed
using Eqs. (5) and (6), aside for noise introduced by the
sampling process. Moreover, they confirm how changing the
parameter pd afftects the model uncertainty, while changing
observed variance in the data (from σ = 1 in Y′, to σ = 10
in Y′′) does not. This phenomenon is also clearly visible

Fully connected (Linear + ReLU) Dropout

x y

10

100 100

h3h2

h1

1 1

Figure 2. Fully connected network used in the experiments.

in Fig. 1 where it can be noticed how the variance of the
output distribution of MCD is impacted by pd (compare
Figs. 1c and 1e, and Figs. 1d and 1f) while being unaffected
by the variance in the dataset it trained on (compare Figs. 1c
and 1d, and Figs. 1e and 1f).

3.2. Non-linear networks

To verify that effects similar to those presented in the pre-
vious section can still be observed after introducing more
layers and non-linearities, we performed a similar experi-
ment on the fully connected neural network shown in Fig. 2.
While this network is still smaller then most real networks,
we decided for this size because it had enough complexity
while still being simple enough to analyze. In all the fol-
lowing experiments we trained for 1000 epochs with MSE
loss and adam optimizer on a dataset of 32000 samples.
We trained two variants of the network with dropout rate
pd = 0.2 and pd = 0.5 respectively. As it can be seen in
the figure, for these experiments the network has one input
x and produces one output y, effectively approximating a
function f : R→ R.

Fig. 3 shows the results produced by the network on a
noisy constant function where for each input x ∈ [0, 1]
multiple possible outputs y are present in the dataset while
∀x,E [y] = 0.5 (Fig. 3a). We first show the behavior of the
network when the last linear layer has a bias term in Fig. 3b.
It can be seen that the network is nullifing the variance com-
pletely. It is indeed setting all weights to 0 and encoding
the desired (constant) output in the bias. If we remove the
bias from the last linear layer (Figs. 3c and 3d) we obtain
constant variance, proportional to the dropout rate.

Fig. 4 shows another experiment, conducted on different
functions. In this case the datasets have no noise, i.e., for
each x, all samples in the dataset have the same correspond-
ing y. All the functions and network variants we tested
are available as additional material, however, due to space
limitations, in here we present only two functions (Figs. 4a
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Figure 3. Results obtained by training a non-linear network on
the dataset shown in (a); different variants of the network have
been trained: one with a bias term in the last linear layer (b) and
two without bias in the last linear layer and with different dropout
rates (c, d). In (a) each dot represents a datapoint; in (b, c, d) the
line represents the average output of 300 forward passes through
the network, with the shaded areas representing σ, 2σ, and 3σ
respectively.
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Figure 4. Results obtained by training a non-linear network on
the dataset shown in (a, b); two variants of the network have been
trained: with dropout rate pd = 0.2 (c,d) and pd = 0.5 (e, f). In (a,
b) each dot represents a datapoint; in (c, d, e, f) the line represents
the average output of 300 forward passes through the network,
with the shaded areas representing σ, 2σ, and 3σ respectively.

and 4b) and only the results for networks where the bias
has been disabled on the last linear layer. All results not
reported here lead to the same conclusions. From these
results, the last of the properties presented in Section 2 can
be noticed, namely the fact that the size of the uncertainty
scales proportionally to the value of y. These also confirm
one more time the dependence of the uncertainty from the
dropout parameter pd.

4. Discussion
The results presented in Section 3 confirm that the behaviors
of MCD that we theoretically observed on a single-layer lin-
ear network are still present even as the size and complexity
of the network grows. When looking at these results, we are
able to make a few observations.

First of all, all experiments provided an additional demon-
stration that the choice of dropout rate pd is crucial and
that in itself the epistemic uncertainty estimate provided by
MCD is not affected by the amount of data available during
training or its variance, which is a good reminder that the
uncertainty estimate produced by MCD is not calibrated
and that the the dropout rate has to be adjusted to match
the epistemic uncertainty. In practise, this is usually done
through grid search, although several methods have been
proposed to learn the parameter during training, e.g., (Gal
et al., 2017; Phan et al., 2018; Boluki et al., 2020).

Another interesting aspect that emerged from our study was
the scaling of the uncertainty based on the value of the net-
work output. This effect, if not taken into account, can lead
to degraded quality of the uncertainty estimates, which we
empiracally noticed in the past in a practical robotic applica-
tion (Verdoja et al., 2019). This effect is particularly visible
when dropout is applied before the last linear layer of the
network, as is the case in the the experiments presented here.
If more non-linear layers are added after the last dropout
layer the non-linearities can reduce this effect. This would
suggest that in applications with widely varying outputs, it
could be useful to limit dropout only to the inner parts of
the network, justifying what other studies have found ex-
perimentally to helps improve performance (Kendall et al.,
2017; Jungo et al., 2018).

5. Conclusions
In this paper we presented a different point of view on the
behavior of MCD that enabled us to show both theoretically
and experimentally different properties of that approach,
in particular the dependency of the uncertainty estimates
from the dropout rate and from the value the network is
trying to estimate. Our intent was to propose a framework to
demonstrate these property in a very understandable fashion,
to help in both architecture design and training procedures
when using MCD.
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Loquercio, A., Segù, M., and Scaramuzza, D. A General
Framework for Uncertainty Estimation in Deep Learning.
IEEE Robotics and Automation Letters, 5(2):3153–3160,
April 2020. ISSN 2377-3766, 2377-3774. doi: 10.1109/
LRA.2020.2974682.

MacKay, D. J. C. A Practical Bayesian Framework for
Backpropagation Networks. Neural Computation, 4(3):
448–472, May 1992. ISSN 0899-7667. doi: 10.1162/
neco.1992.4.3.448.

Osband, I. Risk versus Uncertainty in Deep Learning:
Bayes, Bootstrap and the Dangers of Dropout. In NIPS
2016 Workshop on Bayesian Deep Learning, Barcelona,
Spain, October 2016.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
Exploration via Bootstrapped DQN. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 29 (NIPS 2016), pp. 4026–4034. Curran Associates,
Inc., 2016.

Pearce, T., Anastassacos, N., Zaki, M., and Neely, A.
Bayesian Inference with Anchored Ensembles of Neural
Networks, and Application to Reinforcement Learning.
arXiv:1805.11324 [cs, stat], May 2018.

Phan, B., Salay, R., Czarnecki, K., Abdelzad, V., Denouden,
T., and Vernekar, S. Calibrating Uncertainties in Object
Localization Task. arXiv:1811.11210 [cs, stat], Novem-
ber 2018.

Verdoja, F., Lundell, J., and Kyrki, V. Deep Network Un-
certainty Maps for Indoor Navigation. In 2019 IEEE-
RAS International Conference on Humanoid Robots (Hu-
manoids), Toronto, Canada, October 2019.



Notes on the Behavior of MC Dropout

Additional results obtained by training a non-linear network on different datasets (row a). Different variants of the network
have been trained: one with pd = 0.2 and bias term in the last linear layer (rows b, c), one with pd = 0.2 without bias term
in the last linear layer (rows d, e), one with pd = 0.5 and bias term in the last linear layer (rows f, g), and one with pd = 0.5
without bias term in the last linear layer (rows h, i). In (rows a, d, h) each dot represents a datapoint; in (rows c, e, g, i) the
line represents the average output of 300 forward passes through the network, with the shaded areas representing σ, 2σ, and
3σ respectively.
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ȳ

10 20 30 40 50 60 70 80 90 100
x

0

50

100

150

200

250

300

350

ȳ
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ȳ

10 20 30 40 50 60 70 80 90 100
x

0

50

100

150

200

250

300

350

400

ȳ
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ȳ

10 20 30 40 50 60 70 80 90 100
x

0

100

200

300

400

500

600

700

ȳ
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