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Training generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @) that look like P

LN . |

LSUN bedroom samples P Generated @, MMD GAN
Role of divergence D(P, Q)7
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Testing for differences in samples

Given samples X ~ P and Y ~ @, are P and @ distinguishable (via
D(P, Q))?
m Application: detectmg domain shift (did I train for the right task?)

CIFAR-10 test set (Krlzhevsky 2009) CIFAR-10.1 (Recht+ ICML 2019)
X~P Y ~Q
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m Integral probability metrics (MMD, Wasserstein)

m ¢-divergences (f-divergences) and a variational lower bound (KL)

m Generalized energy-based models

® “Like a GAN” but incorporate critic into sample generation
¢ Perform better than using generator alone

Arbel, Zhou, G., Generalized Energy Based Models (ICLR 2021)

m Comparing samples with MMD

Liu, Xu, Lu, Zhang, G. Sutherland, Learning Deep Kernels for
Non-Parametric Two-Sample Tests (ICML 2020)
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Divergence measures (critics)
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Divergences
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Divergences

\oxegﬁ‘ prob. metriq’

DH(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH

7/67



The Integral Probability Metrics
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Wasserstein distance

. A helpful critic witness:
@@/ Wi(P, Q) = sups,<1 Brf(X) — Bqf(Y).
f1z = supgy If(z) — f(¥)| /llz — vl
W1=0.88
o ome (X 24,4

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017) 9/67
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The Maximum Mean Discrepancy

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q;F) := sup, [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)
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The Maximum Mean Discrepancy

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; )= sup [Bpf(X) ~Eaf(¥)]

(F = unit ball in RKHS F)

Functions are linear combinations of features:

PR A

o0 b N

f@) = {fe@) g =D feoelx)= | f, | [ZOAN
/=1 . ﬂ(x) A~

2 B
Hf”]—' = zQilfi2 <1
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Infinitely many features using kernels

Kernels: dot products of
features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2") = (p(z), o(z'))

Infinitely many features
o(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products of
features

Feature map ¢(z) € F,

p(z)=1[..0iz).. ] €Ly

For positive definite k&,

k(z,z') = (p(z), o(z')) 7

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—7 ||z — 2'||%)

p(x) =

¢1(z) /\—

w ~
pa(z) |~ '
—T —

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4.
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; ) = sup [Epf(X) ~Eaf(¥)]

(F = unit ball in RKHS F)

For characteristic RKHS F, MMD(P,Q; F)=0iff P = Q

m Fnergy distance is a special case [sejdinovic, Sriperumbudur, G. Fukumizu, 2013]

12/67



The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; )= sup [Bpf(X) ~Eaf(¥)]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations of
expected features

Ep(f(X)) = {/,Epp(X))z = (finP) £

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
IF11<1

Smooth function

0 0.2 0.4 0.6 0.8 1
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Integral prob. metric vs feature mean difference

The MMD:

use
MMD(P, Q; F)

= sup [Epf(X) —Eqf(Y)] Epf(X)={ur,f)x

= sup (f,up — Q) F
I7]1<1
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Integral prob. metric vs feature mean difference

The MMD:
\
&
MMD ; ~
(P7 Q’ F)
= sup [Epf(X)—-Eqf(Y)]
IF1I<1

= sup (f,pp — Lo) 5
[k
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Integral prob. metric vs feature mean difference

The MMD: / \}>Q‘
(.\\@a“ o
MMD(P, Q; F) > f
= sup [Epf(X)—-Eqf(Y)]
If[1<1

= sup (f,pp — Lo) 5
[k
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Integral prob. metric vs feature mean difference

The MMD: / \)'OJ
MMD(P, Q; F) >
= sup [Epf(X)—Eqf(Y)] f*
lIf11<1
= sup (f,up — LQ)r
lIfl1<1
. P —Hg

~ lup — uoll
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Integral prob. metric vs feature mean difference

The MMD:
MMD(P, Q; F)
= sup [Epf(X)—Eqf(Y)]
I711<1
= sup (f,pp — 4o) 5
I711<1
= |lup — kol £

IPM view equivalent to feature mean
difference (kernel case only)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {x3,...,X,} ~ P

@Obscwc Y({yl, ey Yt~ Q
o @e ( K‘.
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — Vv
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
——_————
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\I—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\l—‘

The empirical witness function at v

FH(v) = e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘

:5:: (zi,v n :5:: k(yi,v

Don't need explicit feature coefficients f* := [ N

3
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Maximum mean discrepancy

> A helpful critic:
MMD(P, Q) = supy| <1 Brf(X) — Eqf(Y).

MMD=1.8
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Maximum mean discrepancy
>C A helpful critic:
MMD(P, Q) = sup| <1 Brf(X) — Eqf(Y)

MMD=1.1

o 00 \ ¥ W
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Maximum mean discrepancy

An unhelpful critic:
MMD(P, Q) with a narrow kernel.

MMD=0.64




Maximum mean discrepancy

-~

An unhelpful critic:
MMD(P, Q) with a narrow kernel.

MMD=0.64

o 00 \ ¢ W
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The ¢-divergences

Hellinger
KL

Dy(P,Q)
- [ o (B2 o

Pearson chi?
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The ¢-divergences

Define the ¢-divergence(f-divergence):

Du(P, Q) = [ ¢ (B ate)es

where ¢ is convex, lower-semicontinuous, ¢(1) = 0.
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The ¢-divergences

Define the ¢-divergence(f-divergence):

Du(P, Q) = [ ¢ (B ate)es

where ¢ is convex, lower-semicontinuous, ¢(1) = 0.

] #(u) = ulog(u) gives KL divergence,

Dki(P, Q) = /108; (ZEZ) p(z)dz

- (55 s () w0
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Are ¢-divergences good critics?

-

Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dgr(P, Q) =00 Djs(P, Q) =log2

0.8

0.6 |

0.4+

0.2}

19/67



Are ¢-divergences good critics?

¢ Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dgr(P,Q)=00  Dys(P, Q) =1log2

1

0.8 -

0.6 -

0.4+

0.2+

-02  -0.1 0 0.1 0.2 0.3 0.4 05 06
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¢-divergences in practice

Background: the conjugate (Fenchel) dual
¢"(v) = sup {uv — $(u)}.

u€ER

m ¢"(v) is negative intercept of tangent to ¢ with slope v
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¢-divergences in practice
the conjugate (Fenchel) dual

¢*(v) = sup {wv — ¢(u)}.

u€eR

m For a convex l.s.c. ¢ we have

¢"(z) = ¢(z) = sup {zv — ¢*(v)}

vER
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¢-divergences in practice

the conjugate (Fenchel) dual

¢*(v) = sup {wv — ¢(u)}.
u€R
m For a convex l.s.c. ¢ we have

¢"(z) = ¢(z) = sup{zv — ¢*(v)}

vER

#(z) = clog(x)  ¢*(v) = exp(v — 1)
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A variational lower bound

A lower-bound ¢-divergence approximation:

Dy(P, Q) = [ a(2)p (%) az

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)
21/67



A variational lower bound

A lower-bound ¢-divergence approximation:

Dy(P, Q) = [ a(2)p (28) dz

p(z)

= / Q(Z)S}J;p <Q(Z)fz - ¢*(fz)>

*(563)

¢*(v) is dual of ¢(z).
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A variational lower bound

A lower-bound ¢-divergence approximation:

ir.01- [ aon ()
Joome(()e o)
) -

>SupEpf( Eq¢™ (f(Y))

(restrict the function class)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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A variational lower bound

A lower-bound ¢-divergence approximation:

(P.a)= [ o (55)) o
- [ atwrsue (25 - 00
> supEpf( ) —Eq¢* (f(Y))

(restrict the function class)

Bound tight when:

if ratio defined.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

21/67



Case of the KL

Dkr(P, Q) = /log (%) p(z)dz

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Case of the KL

Dki(P, Q) = /log <%> p(z)dz
> sup —Epf(X) +1—Egexp(—f(Y))

fEH
¢*(=f(Y)+1)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Case of the KL

Dxi(P, Q) = /log <%> p(z)dz Bound tight when:
CEof(X & MY opn p(2)
Z?E’E pf(X)+1 qexp(—f(Y)) f (z)——logm
3 ‘ ‘ if ratio defined.
ol

Prob. density
o —_

'
-

—FP
21 —Q
——log ratio q/p
-3 L L
-3 -2 -1 0 1 2 3

X
Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Case of the KL

Dgr(P, Q) = /log <2ﬁ> p(z)dz

(2) .
1.1.
> sup —Epf(X)+1—-Egexp(—f(Y)) i ~
fEH ii
Y ~
sup [—— > f(zi))— = > exp(— +1
m[ PROEESS

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)

a

B

O U
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Case of the KL

Dgr(P, Q) = /log <§E2> p(2)dz

> sup —Epf(X) +1—Eqexp(—/f(Y))
feH

2 sup [—an z;) — —Zexp

fEH

+1

This is a

KL
Approximate
Lower-bound

Estimator.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

22/67
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Case of the KL

Dgr(P, Q) = /log <%> p(2)dz

> sup —Epf(X) +1—Eqexp(—/f(Y))
feH

2 sup [_sz z; ——Zexp

fEH

+1

This is a
K

H & >

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
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Case of the KL

Dgr(P, Q) = /log <2ﬁ> p(z)dz

(2)
> sup —Epf(X)+1—-Egexp(—f(Y))
feH
N?EE[_ZZJC ; ——Zexp +1

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Empirical properties of KALE

KALE(P, Q; M) = sup —Bpf(X) — Bgexp(—f(¥)) + 1

5¢ feH
@ f=(w,é(z))y H an RKHS

|w||3, penalized :

Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with

Disjoint Support,” (arXiv, 2021, Section 2) 23/67



Empirical properties of KALE

KALE(P, Q; M) = sup —Bpf(X) — Bgexp(—f(¥)) + 1

e fex
@ f=(w,é(z))y H an RKHS

|w||3, penalized : KALE smoothie

Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with
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Empirical properties of KALE

KALE(P, Q; M) = sup —Bpf(X) — Bgexp(—f(¥)) + 1

e fex
@ f=(w,é(z))y H an RKHS

|w||3, penalized : KALE smoothie
KALE(Q, P;H)=0.18

coomne 22 2 g

Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with
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Empirical properties of KALE

KALE(P, Q; M) = sup —Bpf(X) — Bgexp(—f(¥)) + 1

e fex
@ f=(w,é(z))y H an RKHS

|w||3, penalized : KALE smoothie
KALE(Q, P;H)=0.12

oo omns) 400 ¢
Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with
Disjoint Support,” (arXiv, 2021, Section 2)
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The KALE smoothie and “mode collapse”

m Two Gaussians with same means, different variance

0.25 1

KALE

——observed | |
——target

0 0.2 0.4 0.6 0.8 1
KL

O wedecolape’

Example thanks to M. Arbel and M. Rosca 24/67



Topological properties of KALE (1)

Key requirements on 7 and X

m Compact domain &,
m 7 dense in the space C(X) of continuous functions on X wrt || - |-
mIffeHthen —f €Hand cf € H for 0 < ¢ < Crpax-

Theorem: KALE(P, Q;H) > 0and KALE(P,Q;H)=0iff P = Q.

Zhang, Liu, Zhou, Xu, and He. “On the Discrimination-Generalization Tradeoff in GANs”

(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)
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Topological properties of KALE (1)

Key requirements on 7 and X

m Compact domain &,
m 7 dense in the space C(X) of continuous functions on X wrt || - |-
mIffeHthen —f €Hand cf € H for 0 < ¢ < Crpax-

Theorem: KALE(P, Q;H) > 0and KALE(P,Q;H)=0iff P = Q.

H dense in C(X) for X C R% when:
H =span{o(wTz +d): [w,b] € O}
o(u) = max{u,0}*, @ €N, and {N\: ) > 0,0 € ©} = RI*L,

Zhang, Liu, Zhou, Xu, and He. “On the Discrimination-Generalization Tradeoff in GANs”

(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)
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Topological properties of KALE (2)

Additional requirement: all functions in H Lipschitz in their inputs
with constant L

Theorem: KALE(P, Q™;#) — 0iff Q™ — P under the weak
topology.

Liu, Bousquet, Chaudhuri. “Approximation and Convergence Properties of Generative

26/67
Adversarial Learning” (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1) /



Topological properties of KALE (2)

Additional requirement: all functions in H Lipschitz in their inputs
with constant L

Theorem: KALE(P, Q™;#) — 0iff Q™ — P under the weak
topology.

Partial proof idea:

KALE(P, Q;H) /fdP /exp )dQ +1
- [ 1(2)dQ(@) - f(a)dP(a
- [(exp(=n) + £ - 1)dQ

< [ 1@)dQ(@) - f(a)dP() < LWA(P, Q)

Liu, Bousquet, Chaudhuri. “Approximation and Convergence Properties of Generative
26/67
Adversarial Learning” (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1) /



How to train your GAN
Generalized Energy-Based Model
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Visual notation: GAN setting
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Visual notation: GAN setting
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Reminder: the generator

Stride 2 16

Project and reshape

Cconv2 CONV 3 64

CONV 4 .
G(2)

Radford, Metz, Chintala, ICLR 2016

29/67



Generalized energy-based models: illustration

Target distribution P

z ~ Unif[0, 1]

zZ=1(2)

N X = Gg*(z), X1 = z

Example thanks to M. Arbel
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Generalized energy-based models: illustration

EBM approximation to target:

p(X) o exp(—F(X))

B(X) =41l Go(a) - X
J v + Ap(X1)

Example thanks to M. Arbel
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Generalized energy-based models: illustration

GAN (generator) distribution Qp

Generator
z ~ unif|0, 1]
X = Bg(z)

Critic
MLP(X)

Example thanks to M. Arbel
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Generalized energy-based models: illustration

Mass of GEBM corrected by critic

Example thanks to M. Arbel

Generator
z ~ unaf[0, 1]
X = Bg(z)

Re-weight using importance
weights defined by energy:

w() « exp(—B(z))
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Generalized energy-based models

Define a model Q) p,,» as follows:

m Sample from generator with parameters 6

X ~ Qg — X:Be(Z), Z~n

m Reweight the samples according to importance weights:

foste) = T2, 2o = [expl-B(@)d (o)

where F € &, the energy function class.
fo,r(z) is Radon-Nikodym derivative of Qp,,z Wrt Qs.
m When Q) has density wrt Lebesgue on X, this is a standard
energy-based model.
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The energy function, on our example
Target distribution P

\

Example thanks to M. Arbel
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The energy function, on our example

“w“ ",
. . ‘Q (3 ‘m‘
. . . QS
. . . * *
R . \d . Q *
. . \ . N 3
. . Q * g A
0
¢ * Q‘ . “ * *
. . RS LW
¢ ¢ LW ot
““‘

Example thanks to M. Arbel

GAN (generator) @, correct support but wrong mass
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The energy function, on our example

Log energy function and @y

m Orange: increase mass

m Blue: reduce mass

7
Example thanks to M. Arbel 32/6



The energy function, on our example

WIONg Imass

Target distribution P and GAN (generator) Qp, wrong support and

“‘ .
"
K]
K
)
* °® o
0, o
4700 ° 0%
L) * °
3 :"“‘“ A
3 . M N (Y 12 ()
° . ¢ >
B ¢ * o 0 ¢
. . * * ‘0 \
L Y . . ‘Q L)
» * (N ‘0‘
:‘ . ‘w‘ o'
.Q““. S
LN ]

Example thanks to M. Arbel
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The energy function, on our example

Log energy function, P, and @y

m Orange: increase weight

m Blue: reduce weight

7
Example thanks to M. Arbel 32/6



How do we learn the energy F7
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How do we learn the energy EF7?

Fit the model using Generalized Log-Likelihood:

ﬁp Q /log fQ E)dP = /EdP IOg ZQ E

m When KL(P, Q) well defined, above is Donsker-Varadhan lower
bound on KL

® tight when E(2) = —log(p(2)/q(2))-
m However, Generalized Log-Likelihood still defined when P and Q)
mutually singular (as long as F smooth)!

33/67



KALE and the energy function

Fit the model using Generalized Log-Likelihood:

Lpo(E /log fo,r)dP = — /EdP log/exp E)d Qg
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KALE and the energy function

Fit the model using Generalized Log-Likelihood:

Lpo(E /log fo,r)dP = — /EdP log/exp E)d Qg

One last trick... (convexity of exponential)
—log/exp E)dQp > —c — e*C/exp(—E)ng +1
tight whenever ¢ = log [ exp(—E)d Qs.
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KALE and the energy function

Fit the model using Generalized Log-Likelihood:

Lpo(E /log fo,r)dP = — /EdP log/exp E)d Qg

One last trick...(convexity of exponential)
—log/exp E)dQp > —c — efc/exp(—E)ng—i—l
tight whenever ¢ = log [ exp(—E)d Qs.
Generalized Log-Likelihood has the lower bound:
Lpo(E)> /(E+ch /exp E—c)dQs+1
= F(P, Qs; € + R)
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KALE and the energy function

Fit the model using Generalized Log-Likelihood:

Lpo(E /log fo,r)dP = — /EdP log/exp E)d Qg

One last trick...(convexity of exponential)
—log/exp E)dQp > —c — efc/exp(—E)ng—i—l
tight whenever ¢ = log [ exp(—E)d Qs.
Generalized Log-Likelihood has the lower bound:
Lpo(E)> /(E+ch /exp E—c)dQs+1
= F(P, Qs; € + R)

This is the KALE! with function class £ + R.
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KALE and the energy function
Fit the model using Generalized Log-Likelihood:

Lpo(E /log fo,r)dP = — /EdP log/exp E)d Qg

One last trick...(convexity of exponential)
—log/exp E)dQg > —c— e /exp(—E)ng +1
tight whenever ¢ = log [ exp(—E)d Qs.
Generalized Log-Likelihood has the lower bound:
Lpo(E) > /(E+ dP — /exp —EFE—¢c)dQp+1
= F(P, Qs; € + R)

Jointly maximizing yields the maximum likelihood energy E* and
corresponding ¢* = log [ exp(—F)d Q. 34/67



Training the base measure (generator)

Recall the generator:
X = By(Z), Z~
Define: K(0) := F(P, Qs; € + R)
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Training the base measure (generator)
Recall the generator:
X =By(2), Z~n
Define: K(0) := F(P, Qs; € + R)
Theorem: K is lipschitz and differentiable for almost all § € © with:
vK(6) = 75 /VIE*(Bg(z))Vng(z)eXp(—E*(Bg(z)))'r](z)dz.

where E* achieves supremum in F(P, Q; & + R).

35/67



Training the base measure (generator)
Recall the generator:

X =By(Z), Z~n
Define: K(0) := F(P, Qs; € + R)

Theorem: K is lipschitz and differentiable for almost all § € © with:
VK(O) = 255 /VIE*(Bg(z))Vng(z)eXp(—E*(Bg(z)))n(z)dz.

where E* achieves supremum in F(P, Q; & + R).

Assumptions:

m Functions in £ parametrized by 7 € ¥, where ¥ compact,
jointly continous w.r.t. (¢, z), L-lipschitz and L-smooth w.r.t. z.

m (0,2) — By(z) jointly continuous wrt (6, 2), z — Bg(z) uniformly
Lipschitz w.r.t. z, lipschitz and smooth wrt & (see paper: constants
depend on 2)
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Sampling from the model

Consider end-to-end model @ s, 5, where recall that
X =By(2), Z~m,

£ o(a) o SRCEE)

VAN
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Sampling from the model

Consider end-to-end model @ s, 5, where recall that
X =By(2), Z~m,

fa,5(z) == e}q)(Z_QEE(x))

For a test function g,

[ 9(@)d@s,5(2) = [ o(BE)sp(B@)n(2)dz

Posterior latent distribution therefore

vg,5(2) = n(2)fz,2(B(2))
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Sampling from the model

Consider end-to-end model @ s, 5, where recall that
X =By(2), Z~m,

fa,5(z) == e}q)(Z_QEE(x))

For a test function g,

[ 9(@)d@s,5(2) = [ o(BE)sp(B@)n(2)dz

Posterior latent distribution therefore

ve,5(z) = 1(2)fs,2(B(2))
Sample z ~ vp,r via Langevin diffusion-derived algorithms (MALA,
ULA, HMC,...) to exploit gradient information.

Generate new samples in X via

X ~ QB,E et Z ~ VB E, X = BQ(Z).
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Experiments
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Examples: sampling at modes

Tempered GEBM Cifarl0 samples at different stages of sampling using
a Kinetic Langevin Algorithm (KLA). Early samples — late samples.
Model run at low temperature (8 = 100) for better quality samples.
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Sampling at modes: results

The relative FID score: %ﬁ‘;)

100-

s |HM [Turner et al., 2019
80- DOT [Tanaka 2019]

[ Langevin (ours)
120-

Cifar10 LSUN CelebA Imagenet

Relative FID score
D
O O

N
o

o

For a given generator By and energy F, samples always better (FID
score) than generator alone.
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Examples: moving between modes

Tempered GEBM Cifar1l0 samples at different stages of sampling
using KLA. Early samples — late samples.

Model run at lower friction (but still low temperature, § = 100) for
mode exploration.

-C‘N \‘

TR

—~ -
el = ol o o

iy )\'f
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m Generalized energy based model:
¢ End-to-end model incorporating generator and critic
® Always better samples than generator alone.

m ICLR 2021
https://github.com/MichaelArbel/GeneralizedEBM

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning
[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]
Generalized Energy Based Models

Michael Arbel, Liang Zhou, Arthur Gretton
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https://github.com/MichaelArbel/GeneralizedEBM

m Generalized energy based model:

¢ End-to-end model incorporating generator and critic
® Always better samples than generator alone.

m ICLR 2021

https://github.com/MichaelArbel/GeneralizedEBM

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning

[Submitted on 10 Mar 2020 (1), last revised 24 Jun 2020 tthis version, v3)]
Generalized Energy Based Models
Michael Arbel, Liang Zhou, Arthur Gretton

NeurIPS 2020:

arXiv.org > ¢s > arXiv:2003.06060

Searon
Computer Science > Machine Learning

[Submitted on 12 Mar 2020 (v1), last revised 24 Mar 2020 (this version, v2)]

Your GAN is Secretly an Energy-based Model

and You Should use Discriminator Driven
Latent Sampling

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle,
Liam Paull, Yuan Cao, Yoshua Bengio

Help | Advand

ICLR 2021:

arXiv.org > ¢s > arXiv:2012.00780 Search
Help | Adva
Computer Science > Machine Learning

[submited on 1 Dec 2020 (v1) ast revised S Jun 2021 (this version, )]

Refining Deep Generative Models via Discriminator
Gradient Flow

Abdul Fatir Ansari, Ming Liang Ang, Harold Soh

ICLR 2021:
arXiv.org > ¢s > arXiv:2010.00654

Help ||
Computer Science > Machine Learning
[Submited on 1 Oct 2020 (11, st revsed 9 Feb 2021 thisverson, v2)]
VAEBM: A Symbiosis between Variational
Autoencoders and Energy-based Models

Zhisheng Xiao, Karsten Kreis, Jan Kautz, Arash Vahdat

41/67


https://github.com/MichaelArbel/GeneralizedEBM

How to find the best kernel for MMD



Integral prob. metric vs feature difference

The MMD:
Witness f for Gauss and Laplace densities
0.8
MMD(P, Q; F) : |
“— = Laplace
= sup [Epf(X)—-Eqf(Y)] g o
IFll=<1 Z o2
= llwp — kol z e
DQ_ -0.2
-04
08 ” 2 2 4

Xor

43/67



The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

MMD*(P, Q) = |lup — poll>
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The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

MMD*(P, Q) = |lup — poll>
= (Up — BQ, 4P — KQ) £
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The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

MMD*(P, Q) = |lup — pollx
= (P — Lo, bP — LQ) £
= (up,up)r+ (L, Q) F — 2(UP, LQ) 7

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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The maximum mean discrepancy

The maximum mean discrepancy in terms of kernel means:

MMD?*(P, Q) = |lup — pollx
= (P — BQ, kP — KQ) 7
= (up, ppP)r + (L) Q) r — 2{kP, Q) 7
= BEpk(X,X')+Egk(Y,Y') = 2BEp ok(X,Y)
() (a) (b)
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Bach entry is one of k(dog,, dog;), k(dog;, fish;), or k(fish;, fish;)

Ll e
P -~

>

»?

-
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[Mustration of MMD

The maximum mean discrepancy:

—2
MMD =n(n— > k(dog,, dog;) + (n— > k(fish,, fish, )
z;éj 1#]
- ﬁ > k(dog;, fish;)
i
LR

dog;, dog;;)

K(ish;. dog,) |

k(dog;, fish;)
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A statistical test using MMD
The empirical MMD:

—2
MMD =——— YCRY > k(zi, ) Zk (v, 75)
z;éj 1-75]

4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— YCRY > k(zi, )
z;ﬁj

4]

Perspective from statistical hypothesis testing:

m Null hypothesis Ho when P = Q

should see mz “close to zero”.
m Alternative hypothesis H; when P # Q

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD" =3 D k(@) + ooy D k(7))
z;éj 1-75]

4]

Perspective from statistical hypothesis testing:

m Null hypothesis Ho when P = Q

should see mz “close to zero”.
m Alternative hypothesis H; when P # Q

2
should see MMD “far from zero”

—2
Want Threshold ¢, for MMD to get false positive rate a
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—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
Laplace with different y-variance.

/\2
nx MMD =1.2

— 9
Vn x MMD™ =1.2

10
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—_— 2
Behaviour of MMD when P # @

Draw n = 200 i.i.d samples from P and @
m Laplace with different y-variance.

/\2
B /nXx MMD =12

10

— 2
MMD =1.2
Number of MMDs: 1 wﬁx —

]
T

2
(2]
T

Prob. of \/n x MMD
IS )

w
T

N
T

0 0.5 1 1.5 , 2
Vi x MMD

25
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Behaviour of m2 when P # @
Draw n = 200 new samples from P and @

m Laplace with different y-variance.

B+ /N X m2 =15

X
Numb(il' Of I\/{[I\/IDS 2 On‘ T

&
~ 4 ".'°. ‘.
<S .." .
= 2 oS e,
= oot ‘!3‘ i\;'“."
X O el &%‘;’J’f
§ - .‘-\f;.‘;. o
2 P A
= -
8
2
Ay

o
oL
N

0 0.5 1 1.5 ) 2 25
/i x MMD so0/67



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
—— 9
Vi x MMD
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—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
—— 9
Vi x MMD
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—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
—— 2
Vi x MMD
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— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD~ — MMD?(P, Q) »p

— N(0,1),
where variance V,(P, Q)= O (n™1) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
I Erpirical PDF —%
e Giaussian fit = .
S g
= o
(= .| :
= @ 05
X
3 6 -4 2 0 2 4 6
. 05¢ X
k5
s}
0

0 0.5 1 1.5 2 25 3 35
—_— 2
Vi x MMD
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—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?
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—_—2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4

0.3

0.2

0.1
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

J—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

J—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 1000

J—

Prob. of n x MM D
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—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
T e | )= [ He @@
™ : -Empirical PDF centred

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
N

n x MMD’
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A statistical test

A summary of the asymptotics:

0.7 T

2

Prob. of n x MMD
& 2 &

o
n
T

0.1
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—P=Q
06 . — P ?é Q|
(2
Q o5 i
= 04| .
X
<
G 03F 8
a ¢ = 1 — a quantile when P = @
o
& oo2f 1
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?
Original empirical MMD for dogs and fish:

X =[P ™ P ... ]
Y =2, M ... |
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How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
X = [@) Tmi gyl ]

Y = [Paed ]
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How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

= [ Mot g B
MMD” 2T Zk
1751
(n— 1 Z k(7
17&1

- ﬁZk(i 7
]

Permutation simulates

P=Q

X =12 "matt ..
%

i

e Ll | Ll -l CEE B
rIII 11




The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
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The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
®m You can choose a good kernel for a given problem

m You can’t get one kernel that has good finite-sample power for all
problems

No one test can have all that power

59/67



Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

f(x)

1

-1 -0.5 0 0.5 1
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

05+

L% @0 mmem o6 & —

f(x)

-0.5
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

05+

f(x)

-0.5
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
(e, ) = exp (5 5lle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
m ...and some problems (e.g. images) might have no good choice for ¢
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Graphical illustration

® Maximising test power same as minimizing false negatives

0.7

0.6

2

Prob. of n x MMD
a 2 &

o
o

0.1

false negatives

—P=Q
—P+#Q

¢o = 1 — a quantile when P = @

61/67



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

A2
Pr; (nMMD > ?:a)
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr; (nMMD > &a)

s <MMD2(P, Q) Cor >
VVn(P, Q)  nyVa(P,Q)

where

m & is the CDF of the standard normal distribution.

m C, is an estimate of ¢, test threshold.
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr; (nMMD > Ea)

(MMDz(P, Q) Ca
VVa(P,Q) 1y Va(P,Q)
O(n1/2) O(n—1/2)

For large n, second term negligible!
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)

5 <MMD2(P, Q) Ca )
VVa(P, Q)  nyVn(P,Q)

To maximize test power, maximize

MMD2(P, Q)
Va(P, Q)
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Data splitting

Choose a kernel k

maximizing \/%
Use chosen k& for MMD test
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®o(z), 26(y)) + €] o(z, y)
k and ¢ are Gaussian kernels
m CIFAR-10 vs CIFAR—lO 1 null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)  CIFAR-10.1 (Recht+ ICML 2019)
X ~P Y ~Q
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Learning a kernel helps a lot

Kernel with deep learned features:
kg(xx y) = [(l - E)K.(q)g(x), @g(y)) + 6] Q(‘Ti y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning
[Submitted on 21 Feb 2020]

Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

ICML 2020
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Questions?
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Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel Anna Korba

Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit

University College London University College London
michael.n.arbel@gmail.com a.korba@ucl.ac.uk
Adil Salim Arthur Gretton

Visual Computing Center Gatsby Computational Neuroscience Unit

KAUST University College London
adil.salim@kaust.edu.sa arthur.gretton@gmail.com
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Sanity check: reduction to EBM case

—
ot

I Contastive Divergence |

Donsker-Varadhan (song,

Base mgdsdure By isreal N closed-form dens L(A?_EE
12-
iR I l
10~

RedWine WhiteWine Parkinsons

kelihood
=

Negative Loﬁ.

67/67



