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Comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?

2/76



Outline

m Maximum Mean Discrepancy (MMD)...

...as a difference in feature means
...as an integral probability metric (not just a technicality!)

m A statistical test based on the MMD

m Next slides: training generative adversarial networks with MMD
Gradient regularisation and data adaptivity

3/76



Feature mean difference

m Simple example: 2 Gaussians with different means

m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

Idea: look at difference in means of features of the RVs

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

Idea: look at difference in means of features of the RVs

2

Prob. density
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Feature mean difference

m Gaussian and Laplace distributions
®m Same mean and same variance

m Difference in means using higher order features.. RKHS

Gaussian and Laplace densities

0.7

Prob. density
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Infinitely many features using kernels

Kernels: dot products Exponentiated quadratic kernel
of features

k(z,2') = exp (—l|z — 2'|*)
Feature map ¢(z) € F,

(p(:L‘) = [ ..(pi(:B) .. ] €l g01(.’17)

For positive definite k&,
k(z, ') = (p(z), o(z)) 7 p(x) =

Infinitely many features p3()
¢(z), dot product in
closed form!

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 7/76




Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]
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Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]

For positive definite k(z, z’),

(kp,po)r = Ep ok(z,y)

forz ~ Pand y ~ Q.

Fine print: feature map ¢(z) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?(P, Q) = |lup — pollx
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
= (up, up)r + (L@  kQ) £ — 2{UP, LQ) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — pol%

= (up, pP)F + (L0s ko) — 2{kP, LQ) £
=Epk(X, X"+ Eqk(Y,Y")—2Ep ok(X,Y)

(2) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)
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>
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[Mustration of MMD

The maximum mean discrepancy:

—_—2
MMD =TL(n——Zk dng)dOg]) n(n—zk ﬁSh“ﬁSh )
z;éj 1#]
- E > k(dog;, fish,)
LR
P, o T

*

g

dog;, dog;; )

k(fish;, dog;) ‘ fish;, fish; )

)

k(dog;, fish

.:
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MMD as an integral probability metric

Are P and @ different?
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MMD as an integral probability metric

Are P and @ different?
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Samples from P and Q
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function

0.5

-05 1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @
MMD(P, Q; F) = sup [Epf(X)—Eqf(Y))

IFllz<1
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q;F) = sup [Epf(X)—Eof(Y))
Ifllz<1

(F' = unit ball in RKHS F)

Functions are linear combinations of features:

T p1(z) N

AN

F() = (f ol f—Eifew S AV -
. ﬁﬁ(aj) v —z

£l =0, £2<1 -




MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) = sup [Epf(X)—Eof(Y))

Prob. density and f

17l z<1

(F' = unit ball in RKHS F)

0.8

0.6

Witness f for Gauss and Laplace densities

s

Gauss ]

m— |_aplace

06 . .
-6 -4 -2

Xor
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := Bl [Epf(X) —Eqf(Y)]
(F' = unit ba_ll in RKHS F)

For characteristic RKHS 7, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudley, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)
m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002]
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := Bl [Epf(X) —Eqf(Y)]
(F = unit ba_ll in RKHS F)

Expectations of functions are linear combinations
of expected features

Ep(f(X)) = (/,Epp(X))r = ({1 4P) 5

(always true if kernel is bounded)
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Integral prob. metric vs feature difference

The MMD:
Witness f for Gauss and Laplace densities
0.8

MMD(P, Q; F) : |
“— = L aplace

= sup [Epf(X)—-Eqf(Y)] g

I7ll7<1 2
085 -4 2 0 2 4 6
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Integral prob. metric vs feature difference

The MMD:
use

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
lIFll=<1

= sup (f,up—LQ)r
IfllF<1

Epf(X) = (upr,f)r
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Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—-Eqf(Y)]
Ifll=<1

= sup (f,pup —LQ)r
ESS!
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Integral prob. metric vs feature difference

The MMD:

Q
\ y ;
2\ !
MMD(P, Q; F) :};\‘b :
= sup [Epf(X)—-Eqf(Y)] f
Ifll=<1

= sup (f,pup —LQ)r
ESS!
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Integral prob. metric vs feature difference

The MMD:
Q
\ g )
i ‘03\ Q
MMD(P, Q; F) Do\‘ v
= sup [Epf(X)—-Eqf(Y)]
IfllF<1 *
= sup (f,up—LQ)r
IfllF<1
* Hp — hQ

=]

up—pgll



Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
[Ifll=<1

= sup (f,up —pQ)F
IFll <1

= llup — poll

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

S Ynt~ Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — VvV
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
The empirical feature mean for P

1 n
B =7 3ol
1=
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
1 n
B =3 D v()
1=

The empirical witness function at v

()= e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
1 n
B =3 D v()
1=

The empirical witness function at v
o< (pp — Lo, o(v) 5
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
1 n
e = (@)
1=1
The empirical witness function at v

)= (" e(v)#
x (hp — 1o, (V) £

n

D S O S v
- nz:l (3] n1:1 YZJ

Don’t need explicit feature coefficients f* := [ fi* f5

]
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Interlude: divergence measures
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Divergences
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Divergences

\O‘egra| prOb. metriq’

D’H(P7 Q)

= sup |[Ex.pg(X) — Ey.qg(Y)
geEH
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The integral probability metrics

\«@3“3‘ prob. met"iq,.

wasserstein

D’H(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH
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The ¢-divergences

&,d\ve 'gence

Hellinger
KL

Dy(P,Q)
- [ o (B2 o

Pearson chi?
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Divergences

\o‘eg'd prob. metrie &,d'\vergenceo

wasserstein Hellinger

KL

D’H(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH

Dy(P,Q)

- [oos (5@) =

Pearson chi?

MMD
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Divergences

\o‘egral prob. metl‘iQ’ &,d‘\vergenceo

wasserstein

Hellinger
KL

Dy (P,Q)

= sup [Ex~pg(X) — Ey~qg(Y)|
gEH

Dy(P,Q)

- [oos (3@) =

Pearson chi?

MMD

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

25/76



Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— Zk (z:, 7;)
z;ﬁj

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

———— 2
Want Threshold ¢, for MMD to get false positive rate o
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—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and Q
Laplace with different y-variance.

/\2
nx MMD =1.2

— 9
Vn x MMD™ =1.2

10
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—_— 2
Behaviour of MMD when P # @
Draw n = 200 i.i.d samples from P and @

m Laplace with different y-variance.

~
T

2
(o2}
T

Prob. of /il x MMD'
o~

o
T

w
T

n
T

— 2
nx MMD =12

Number of MMDs: 1

0 0.5 1 15 , 2 25
Vi x MMD

Jn

10

¢ ¢ ..7

6 R

cete T, e

4 . 1
o o o .

2 . o
Lo o 13 23
o 2
0¢ 208% .

ke
elesey 28

4 .
s
AL G

.

.

X

2 0 2

« MMD’ =1.2
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. —— s 2
Behaviour of MMD when P # @Q
Draw n = 200 new samples from P and @
m Laplace with different y-variance.

/\2
B /nx MMD =15

2
nx MMD =15
Number of MMDs: 2 }of : :
4 : ‘ ‘ ‘ ‘
35) . we ]
o .l' .
. 3 ar e
= 251 .—-‘&"’3 Suiss.
x R
) Db I
S 2} et
e E S
S 15r ap ol
S A
£ o9l ® ’
-8
051 -10 :
2 0 2
0

0 0.5 1 15 5 2 25
i x MMD 30/76



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 31/76



—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 31/76



—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
— 2
Vnx MMD 31/76



— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD  — MMD?(P, Q) »p

— N(0,1),
3 _ -1
where variance V,(P, Q)= O (n7!) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
1.5 T T . T T T —Px
I Erpirical PDF —%
e Giaussian fit =,
5 ﬂg)
(= 5
= g,
X
% 6 -4 2 0 2 4 6
. 05 X
e}
2
s}y
0

0 0.5 1 1.5 2 25 3 3.5

i x MMD' 32/76



—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?
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— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4r

031

0.2r

0.1r
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs:

1000

—

Prob. of n x MM D
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—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

o0
nl\m2 ~ Z Wy [zlz — 2]

=1
) where
MMD density under H,
‘ : ‘ Az ::u/]ﬁ z,z" )i (z)dP(z
o | AE) = [ Hes)@)dPe)
™ ’ -Empirical PDF centred

Prob. of n x MM D
o
~

2 ~N(0,2) iid.

o
o

n x MID
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A statistical test

A summary of the asymptotics:

0.7 T

0.6

2
o
o
T

Prob. of n x MMD
a 5

o
o
T

0.1+
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—_—P =
0.6} ' —_—P # Q|
a2l
(E: 0.5 J
= ]
X
<
3 03 8
,g' ¢, = 1 — a quantile when P = @
=02 .
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?

Original empirical MMD for dogs and fish:

X =[P ™ P ... ]

Y =2, M ... |

—_—2
MMD = ln =) Zk(xz,a:])
1£]
1
k(yi,y
2
- ﬁzk(m’n}q)




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

X = [ "mat ]
Y

= [Tl ]

38,76



How do we get test threshold c,?
Permuted dog and fish samples (merdogs):

X [\'Q—%\') " W e ]
Y

MMD” —(n_lgk %)

+7n(n_1);k(s7 %)

2 o i .
—ﬁzk(@ﬁj) ! | I!
1,7
rlI_ll

. . 'f'l 1" L=
Permutation simulates Al mmin il

P:Q | II_II _I-l-




How to choose the best kernel:
optimising the kernel parameters



The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
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The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
B You can choose a good kernel for a given problem

®m You can’t get one kernel that has good finite-sample power for all
problems

No one test can have all that power
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k() = exp (e — ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k() = exp (e — ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k() = exp (e — ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...

-1 -0.5 0 0.5 1
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k() = exp (e — ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...

1

0.5+
X o a6 o mam »e

-0.5
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k() = exp (e — ol

m Characteristic: for any o: for any P and @, power — 1 as n — 00
m But choice of ¢ is very important for finite n...

1

0.5+

-0.5

-1 -0.5 0 0.5 1
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k() = exp (e — ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of o is very important for finite n...
m ...and some problems (e.g. images) might have no good choice for ¢
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Graphical illustration

B Maximising test power same as minimizing false negatives

07 :
—_—P =
0.6 - —_—P £ Q|

[a\)

(C: 05 ]
= oal ]
X
IS
5 03F ]
,;C:; ¢o =1 — a quantile when P = @
02t B
R~ false negatives

0.1
0 T
-2 1 0 1 2 3 4 5 6
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pry (nMMD > aa)
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Pr; (nl\Tl\HD2 > &a>
s (MMDZ(P, Q) c >

VValP, Q)  ny/Va(P,Q)

where

m $ is the CDF of the standard normal distribution.

m C, is an estimate of ¢, test threshold.
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Pr1 nIMMD >ca>

MMD?(P, Q) Car
VvV Vau(P, Q) n\/ Vo(P, Q)
1/2 O(nfl/z)

For large n, second term negligible!
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr, (nMMD > aa)

s (MMD2(P, Q) Ca )
VVa(P, Q) 1y Va(P,Q)

To maximize test power, maximize

MMD?(P, Q)
Vu(P, Q)

43/76



Data splitting

Choose a kernel k

D"
maximizin
g /713 )
Use chosen k& for MMD test
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10.1 (Recht+ ICML 2019)
X~P Y ~Q
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)r(®o(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning
[Submitted on 21 Feb 2020}
Learning Deep Kernels for Non-Parametric Two-Sample Tests

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

Accepted to ICML 2020
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Questions?

m A brief introduction to RKHS

m Maximum Mean Discrepancy
(MMD)...

...as a difference in feature means
...as an integral probability metric
(not just a technicality!)

m A statistical test based on the MMD
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MMD for GAN training



Training implicit generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @ that look like P

L . |

LSUN bedroom samples P Generated @@, MMD GAN
Using a critic D(P, Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 20185, ~ 48/76

(Arbel. Sutherland. Binkowski. G.. NeurIPS 2018)



Visual notation: GAN setting

=Pt

49/76



Visual notation: GAN setting
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Critic functions

\o‘egm prob. met,iq’ &,d'\vergence&

wasserstein Hellinger

KL

D’H(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH

Dy(P,Q)

- [oos (5@) =

Pearson chi?

MMD
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What I won’t cover: the generator

Stride 2

Stride 2

Project and reshape

Conv2 CONV 3 64

CONV 4 .
G(2)

Radford, Metz, Chintala, ICLR 2016
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F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

6 Dys(P, Q) = 3Dk (p, 55%) + 3Dk (4, 557)

Djs(P, Q) =log2

0.8

0.6 |

0.4+

0.2+
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F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

6 Dys(P, Q) = 3Dk (p, 55%) + 3Dk (4, 557)

Djs(P, Q) =log2

0.8

0.6 |

0.4+

0.2+

52/76



F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

: Dss(P, Q) = 3Dk (p, B5%) + 5 Dxr (4, 557)

What is done in practice?
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F-divergence as critic

-~ An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

L Dss(P, Q) = 3Dk (p, B5%) + 5 Dxr (4, 557)

What is done in practice?

m Use a variational approximation to the critic, alternate generator and
critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
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F-divergence as critic

-~ An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

: Dss(P, Q) = 3Dk (p, B5%) + 5 Dxr (4, 557)

What is done in practice?

m Use a variational approximation to the critic, alternate generator and

critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
m Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]
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F-divergence as critic

-~ An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

L Dss(P, Q) = 3Dk (p, B5%) + 5 Dxr (4, 557)

What is done in practice?

m Use a variational approximation to the critic, alternate generator and
critic training Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
m Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]
o ...or (approx. equivalently) a data-dependent gradient penalty for the
variational critic Roth et al [NeurIPS 2017|, Nagarajan and Kolter [NeurIPS

2017], Mescheder et al. [[CML 2018] ,
52/76



Wasserstein distance as critic

. A helpful critic witness:
@@/ Wi(P, Q) = sups,<1 Brf(X) — Bqf(Y).
f1z = supgy 1f(z) — f(¥)| /llz — vl
W1=0.88
o ome (X 24,4

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)

53/76
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Wasserstein distance as critic

. A helpful critic witness:
@@/ Wi(P, Q) = sups,<1 Brf(X) — Bqf(Y).
f1z = supgy 1f(z) — f(¥)| /llz — vl
W1=0.65
o oo L X X 22

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)

53/76
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)



MMD as critic

> A helpful critic witness:
MMD(P, Q) = supjj|| <1 Brf(X) — Eqf(Y).
MMD=1.8

Real
points
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MMD as critic

>C A helpful critic witness:
MMD(P, Q) = sup|s|| <1 Brf(X) — Eqf(Y)
MMD=1.1

® 0@ \ ¥ W

54/76



MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64

Real
points




MMD as critic

-~

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64
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Gradient penalty:
the regularisation viewpoint



MMD for GAN critic

Can you use MMD as a critic to train GANs?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li' YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

7107124/

HEFICIFEIR
6 4/723

Need better image features.

56/76



CNN features for IPM witness functions

m Add convolutional features!
m The critic (teacher) also needs to be trained.

5 - !
P2

Az, y) = hy " (2)hy(y) R(z,y) = F(hy(z), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
k ise.g. an exponentiated quadratic
m Wasserstein GAN Arjovsky kernel
et al. [ICML 2017] MMD Li et al., [NeurIPS 2017
B WGAN-GP CGulrajani et al. Cramer Bellemare et al. [2017]
[NeurIPS 2017] Coulomb Unterthiner et al., [[CLR 2018]

Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018] /78



CNN features for IPM witness functions

m Add convolutional features!
m The critic (teacher) also needs to be trained.

5 - !
P2

A(z,y) = hy " (2)hy(y) Rz, y) = k(hy(z), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
m Wasserstein GAN Arjovsky et al. k ise.g. an exponentiated quadratic
[ICML 2017] kernel
B WGAN-GP CGulrajani et al. MMD Li et al., [NeurIPS 2017]
[NeurIPS 2017] Cramer Bellemare et al. [2017]

Coulomb Unterthiner et al., [I[CLR 2018
Demystifying MMD GANS Binkowski
Sutherland, Arbel, G., [ICLR 2018]
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Witness function, kernels on deep features

Reminder: witness function,

k(z,vy) is exponentiated quadratic
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Witness function, kernels on deep features

Reminder: witness function,
E(hy(z), hy(y)) with nonlinear 4y and exp. quadratic &
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Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.
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Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?

60,/76



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?

Real
points
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A simple 2-D example

Samples from target P and model Q)

e target
e model
© L]
° o
° L]
° .
L] L] L] L]
¢ S ole, , ¢
‘ ..:‘ : N .'.o .C
L]
L)
N {. -.. e
¢ ¢« ° oge
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L]
L ° oe
. ° °
e ® '. .
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(z, y)

MMD Gaussian

S liiiiiiiii %

'FRRZ 22229
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A simple 2-D example
What the kernels 4(z, y) look like

MMD Gaussian

L . ) target
¢ « model
D A S
e ° o o
. : * .0
- - %
o y) o® D \ .’. o
2 . "2
L] ? L] ° L]
e Y [ X
[] 9 . © o O
o
" PS o
- T * . ®
L]

61,76



A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Dougal J. Sutherland
Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit
University College London University College London
michael.n.arbel@gmail.com dougal@gmail.com
Mikotaj Bifikowski Arthur Gretton
Department of Mathematics Gatsby Computational Neuroscience Unit
Imperial College London University College London
mikbinkowski@gmail.com arthur.gretton@gmail.com
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:
SMMD(P,\) =o0px MMD

where

d

oha = >\+/kﬁ(h«p(x),M(w))dp(x)JrZ/3¢3¢+dk(h¢($),M(w)) dpP(z)

i=1
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:
SMMD(P,\) =o0px MMD

where
d

0‘2P’>\ = )\—I—/k:(hlp(:r),h¢(:z:))dP(3:)+Z/8¢3¢+dk(h¢(az),h¢(:c)) dP(z)
=1

Idea: rather than regularise the critic or witness function, regularise
features directly
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Simple 2-D example revisited

Samples from target P and model Q)

e target
e model
© L]
° o
° L]
° .
L] L] L] L]
¢ S ole, , ¢
‘ ..:‘ : N .'.o .C
L]
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¢ ¢« ° oge
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Simple 2-D example revisited
Use kernels % (hy (), hy(y)) with features

huy(z) = Ls ([ Lz(Lxl(x)) D

where Ly, Ly, L3 are fully connected with quadratic nonlinearity.
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P, X)
to learn hy(z) for k(hy(z), hy(y))

vector field movie, use Acrobat Reader to play 63,76



Simple 2-D example revisited

What the kenels %(hy(z), hy(y)) look like

isolines movie, use Acrobat Reader to play

63/76



Our empirical observations

Data-adaptive critic loss:
m Witness function class for SMMD(P, \) depends on P.

o Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) can be unhelpful.
o WGAN-GP is a pretty good data-dependent regularisation strategy

m Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]
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Our empirical observations

Data-adaptive critic loss:
m Witness function class for SMMD(P, \) depends on P.

o Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) can be unhelpful.
o WGAN-GP is a pretty good data-dependent regularisation strategy

m Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

m Weaker critics can give better signals to poor (early stage) generators.
m Incomplete training of the critic is also a regularisation strategy

64,76



Don’t just use gradient regularizers!

Spectral norm regularizer (effectively smooths critic class; ICLR 2018):

SPECTRAL NORMALIZATION

FOR GENERATIVE ADVERSARIAL NETWORKS
Takeru Miyato!, Toshiki Kataoka!, Masanori Koyama?, Yuichi Yoshida®
{miyato, kataoka}@preferred.ip
koyama.masanori@gmail.com

yyoshida@nii.ac. jp
IPreferred Networks, Inc. 2Ritsumeikan University *National Institute of Informatics

Entropic regularizer (avoid mode collapse):

arXiv.org > stat > arXiv:1910.04302

Statistics > Machine Learning
[Submitted on 9 Oct 2019]

Prescribed Generative Adversarial Networks
Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei, Michalis K. Titsias

65,76



Evaluation and experiments
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Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION
FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato', Toshiki Kataoka', Masanori Koyama®, Yuichi Yoshida®
{miyato, katauka]ﬁgreferred.jp

orks, Inc. *Ritsumeikan University *National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikolaj Biikowski®
Department of Mathematics
Imperial College London
mikbinkowskifgmal

om

Dougal J. smmn;w Arhel & Arthur Gretton

rbel,arthur.grett:

SOBOLEV GAN

Youssef Mroueh', ,Chan-Lisng L *, Tom Sercu’*, Anant Raj°* & Yu Cheng'

+ IBM Rescarch A

o Camnegie Mellon U

© Max Planck Institute for Imauigem Systems

+ denotes Equal Contribution

{mroueh, chengyu}@us.ibm.com, chunlial@cs.cmu.edu,
tom.sercul@ibm.com, anant.rajltuebingen. mpg. de

BOUNDARY-SEEKING
GENERATIVE ADVERSARIAL NETWORKS
R Devan H

MILA, University of Montréal, IVADO
erroneusdgrall.com

Athul Paul Jacab-
MILA, MSR, University of Waterloo
apjacobledu. uwaterloo.ca

Tong Che
MILA, University of Moatréal
tong.chefunontreal.ca
Kv\mgmm Cho Yoshua Bengio
York Uni MILA, Univessity of Monteéal, CIFAR, IVADO
AR Al Gk Schola yoshua.bengiofumontreal .ca

kyunghyun. chollayu. edu

67/76



Results: unconditional imagenet 64 x 64

KID scores:

= BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.
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Results: unconditional imagenet 64 x 64

KID scores:

= BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.




Summary

m GAN critics rely on two sources of regularisation

Regularisation by incomplete training
Data-dependent gradient regulariser

m Some advantages of hybrid kernel/neural features:

MMD loss still a valid critic when features not optimal (unlike
WGAN-GP)

Kernel features do some of the “work”, so simpler hy features possible.

“Demystifying MMD GANSs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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https://github.com/mbinkowski/MMD-GAN
https://github.com/MichaelArbel/Scaled-MMD-GAN 

Post-credit scene: Generalised Energy-Based Models

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning
[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]
Generalized Energy Based Models

Michael Arbel, Liang Zhou, Arthur Gretton

https://github.com/MichaelArbel/GeneralizedEBM
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https://github.com/MichaelArbel/GeneralizedEBM

Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

hy (@) hy(y), f = 64, KID=4
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Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

kE(hy(2), hy(y)), f = 16, hy T (2)hy(y), f = 16, KID=37
KID=9 71/76



Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:ezeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y))-
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).
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Evaluation of GANs

The lnceptlon SCOI'e? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:czeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y)).
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs

The P‘rechet 1ncept10n dlStance7 Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |lup — moll* +x(Zp) + tx(Z0) - 2tr (Bp20)? )

where up and X p are the feature mean and covariance of P
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Evaluation of GANs

The P‘rechet 1ncept10n dlStance7 Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |lup — moll* +x(Zp) + tx(Z0) - 2tr (Bp20)? )

where up and X p are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.

m Bias demo,
CIFAR-10 train vs
test

50

40

30

FID

20

0 2000 4000 6000 8000
n

10000
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Evaluation of GANs

The FID can give the wrong answer in theory.
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P1 ~N(0,(1 —m™1)?) Py ~ N(0,1) Q ~ N(0,1).
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Clearly,
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P1 ~N(0,(1 —m™1)?) Py ~ N(0,1) Q ~ N(0,1).

Clearly,
1
FID(P1, Q) = o > FID(P,, Q) =0

Given m samples from P; and P,

FID(Py, Q) < FID(P,, Q).

74/76



Evaluation of GANs

The FID can give the wrong answer in practice.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal
entries.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 &~ FID(P,, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P;, Q)
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, 1)) Ps =relu(N(1,.88+.214)) Q =relu(WN(1, 1))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 &~ FID(P,, Q)
With m = 50000 samples,
FID(Py, Q) ~ 1133.7 < 1136.2 & FID(P;, Q)

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C. 75/76



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [[CLR 2018]
Measures similarity of the samples’ representations in the inception

architecture (pool3 layer)

MMD with kernel 0.004

0.003

1 T e 0.002

Hnu={g® vt

¥ 0.000

m Checks match for feature oo

means, variances, skewness ou

m Unbiased : eg CIFAR-10 -0.003
train/test 0 250 500 750 1(::)0 1250 1500 1750 2000
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [I[CLR 2018]
Measures similarity of the samples’ representations in the inception

architecture (pool3 layer)
MMD with kernel 0.004

0.003
1 + 3 0.002
k(:l:, y) - Ew y+1) . 0.001

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

train /test 0 250 500 750 12:)0 1250 1500 1750 2000

.but isn’t KID is computationally costly?”
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003

1 T 3 0.002

k(a:’ y) - Em v+ ! . q 0001

m Checks match for feature - _Zzz:)

means, variances, skewness _0:002

m Unbiased : eg CIFAR-10 -0.003
train /test 0 250 500 750 1000 1250 1500 1750 2000

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper

(or use Tensorflow implementation)!
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004
0.003
1 T 3 0.002
k(tL’, y) = (dm y+ 1) : 0.001

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

1 0 250 500 750 1000 1250 1500 1750 2000
train/test .

Also used for automatic learning rate adjustment: if KID(]?’tH, Q)
not significantly better than KID(Py, Q) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

76/76
Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [ar/xiv,

June 2018]



