
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

Joseph E. Gonzalez Yucheng Low Arthur Gretton1 Carlos Guestrin
Carnegie Mellon University

jegonzal@cs.cmu.edu
Carnegie Mellon University

ylow@cs.cmu.edu
Gatsby Unit, UCL

arthur.gretton@gmail.com
Carnegie Mellon University

guestrin@cs.cmu.edu

Abstract

We explore the task of constructing a paral-
lel Gibbs sampler, to both improve mixing and
the exploration of high likelihood states. Recent
work in parallel Gibbs sampling has focused on
update schedules which do not guarantee con-
vergence to the intended stationary distribution.
In this work, we propose two methods to con-
struct parallel Gibbs samplers guaranteed to draw
from the targeted distribution. The first method,
called the Chromatic sampler, uses graph col-
oring to construct a direct parallelization of the
classic sequential scan Gibbs sampler. In the
case of 2-colorable models we relate the Chro-
matic sampler to the Synchronous Gibbs sam-
pler (which draws all variables simultaneously
in parallel), and reveal new ergodic properties of
Synchronous Gibbs chains. Our second method,
the Splash sampler, is a complementary strategy
which can be used when the variables are tightly
coupled. This constructs and samples multiple
blocks in parallel, using a novel locking proto-
col and an iterative junction tree generation al-
gorithm. We further improve the Splash sampler
through adaptive tree construction. We demon-
strate the benefits of our two sampling algorithms
on large synthetic and real-world models using a
32 processor multi-core system.

1 INTRODUCTION
Gibbs sampling is a popular MCMC inference procedure
used widely in statistics and machine learning. On many
models, however, the Gibbs sampler can be slow mixing
[Kuss and Rasmussen, 2005, Barbu and Zhu, 2005]. Con-
sequently, a number of authors [Doshi-Velez et al., 2009,
Newman et al., 2007, Asuncion et al., 2008, Yan et al.,

Appearing in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright 2011
by the authors.

2009] have proposed parallel methods to accelerate Gibbs
sampling. Unfortunately, most of the recent methods rely
on Synchronous Gibbs updates that are not ergodic, and
therefore generate chains that do not converge to the tar-
geted stationary distribution.

In this work we propose two separate ergodic parallel
Gibbs samplers. The first, called the Chromatic sampler,
applies a classic technique relating graph coloring to paral-
lel job scheduling, to obtain a direct parallelization of the
classic sequential scan Gibbs sampler. We show that the
Chromatic sampler is provably ergodic and provide strong
guarantees on the parallel reduction in mixing time.

For the relatively common case of models with two-
colorable Markov random fields, the Chromatic sampler
provides substantial insight into the behavior of the non-
ergodic Synchronous Gibbs sampler. We show that in the
two-colorable case, the Synchronous Gibbs sampler is
equivalent to the simultaneous execution of two indepen-
dent Chromatic samplers and provide a method to recover
the corresponding ergodic chains. As a consequence, we
are able to derive the invariant distribution of the Syn-
chronous Gibbs sampler and show that is ergodic with re-
spect to functions over single variable marginals.

The Chromatic sampler achieves a linear increase in the
rate at which samples are generated and is therefore ideal
for models where the variables are weakly coupled. How-
ever, for models with strongly coupled variables, the chain
can still mix prohibitively slowly. In this case, it is often
necessary to jointly sample large subsets of related random
variables [Barbu and Zhu, 2005, Jensen and Kong, 1996] in
what is known as a blocking Gibbs sampler.

Our second parallel Gibbs sampler, the Splash sampler,
addresses the challenges of highly correlated variables by
incrementally constructing multiple bounded tree-width
blocks, called Splashes, and then jointly sampling each
Splash using parallel junction-tree inference and backward-
sampling. To ensure that multiple simultaneous Splashes
are conditionally independent (and hence that the chain is
ergodic), we introduce a Markov blanket locking proto-
col. To accelerate burn-in and ensure high likelihood states

1Affiliated with CMU and MPI for Biological Cybernetics

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

are reached quickly, we introduce a vanishing adaptation
heuristic for the initial samples of the chain, which explic-
itly builds blocks of strongly coupled variables.

We provide a highly tuned open-source implementation of
both parallel samplers using the new GraphLab framework
[Low et al., 2010] for parallel machine learning, and com-
pare performance on synthetic and real-world sampling
problems using a 32 processor multicore system. We find
that both algorithms achieve strong speedups in sample
generation, and the adaptive Splash sampler can further ac-
celerate mixing on strongly correlated models. Our exper-
iments illustrate that the two sampling strategies comple-
ment each other: for weakly coupled variables, the Chro-
matic sampler performs best, whereas the Splash sampler
is needed when strong dependencies are present.

2 THE GIBBS SAMPLER
In this work we focus on large probabilistic models that can
be represented as factorized distributions of the form:

π (x1, . . . , xn) ∝
∏

A∈F

fA(xA), (2.1)

where each clique A ∈ F is a subset, A ⊆ {1, . . . , n},
of indices and the factors fA are un-normalized positive
functions, fA : xA → R+ over subsets of random vari-
ables. While we will only consider discrete random vari-
ables Xi ∈ Ω, most of the techniques can be directly ap-
plied to continuous random variables.

Because the independence structure of Eq. (2.1) is cen-
tral to the design of efficient parallel Gibbs samplers, we
will rely heavily on the Markov Random Field (MRF).
The MRF of π is an undirected graph over the variables
where Xi is connected to Xj if there is a A ∈ F such that
i, j ∈ A. The set of all variables XNi adjacent to variable
Xi is called the Markov Blanket of Xi. A variable Xi is
conditionally independent of all other variables given its
Markov Blanket:

π (Xi |XNi) = π (Xi |X−i) (2.2)

where X−i refers to the set of all variables excluding the
variable Xi.

The Gibbs sampler, introduced by Geman and Geman
[1984], is a popular Markov Chain Monte Carlo (MCMC)
algorithm used to simulate samples from the joint distri-
bution π. The Gibbs sampler is constructed by iteratively
sampling each variable,

Xi ∼ π (Xi |XNi = xNi) ∝
∏

A:i∈A,A∈F

fA(Xi,xNi
)

(2.3)
given the assignment to the variables in its Markov blanket.
Geman and Geman [1984] showed that if each variable is
sampled infinitely often and under reasonable assumptions

Algorithm 1: The Synchronous Gibbs Sampler
forall Variables Xj do in parallel1

Execute Gibbs Update: X
(t+1)
j ∼ π

“
Xj |x(t)

Nj

”
2

barrier end3

on the conditional distributions (e.g., positive support), the
Gibbs sampler is ergodic (i.e., it converges to the true distri-
bution). While we have considerable latitude in the update
schedule, we shall see in subsequent sections that certain
updates must be treated with care: in particular, Geman and
Geman were incorrect in their claim that parallel simulta-
neous sampling of all variables (the Synchronous update)
yields an ergodic chain.

For large models with complex dependencies, the mixing
time and even the time required to obtain a high likeli-
hood sample can be substantial. Therefore, we would like
to use parallel resources to increase the speed of the Gibbs
sampler. The simplest method to construct a parallel sam-
pler is to run a separate chain on each processor. However,
running multiple parallel chains requires large amounts of
memory and, more importantly, is not guaranteed to accel-
erate mixing or the production of high-likelihood samples.
As a consequence, we focus on single chain parallel ac-
celeration, where we apply parallel methods to increase the
speed at which a single Markov chain is advanced. The sin-
gle chain setting ensures that any parallel speedup directly
contributes to an equivalent reduction in the mixing time,
and the time to obtain a high-likelihood sample.

Unfortunately, recent efforts to build parallel single-chain
Gibbs samplers have struggled to retain ergodicity. The re-
sulting methods have relied on approximate sampling algo-
rithms [Asuncion et al., 2008] or proposed generally costly
extensions to recover ergodicity [Doshi-Velez et al., 2009,
Newman et al., 2007, Ferrari et al., 1993]. A central ob-
jective in this paper is to design an efficient parallel Gibbs
samplers while ensuring ergodicity.

3 THE CHROMATIC SAMPLER
A naive single chain parallel Gibbs sampler is obtained by
sampling all variables simultaneously on separate proces-
sors. Called the Synchronous Gibbs sampler, this highly
parallel algorithm (Alg. 1) was originally proposed by Ge-
man and Geman [1984]. Unfortunately the extreme paral-
lelism of the Synchronous Gibbs sampler comes at a cost.
As others [e.g., Newman et al., 2007] have observed, one
can easily construct cases (see Appendix A) where the Syn-
chronous Gibbs sampler is not ergodic and therefore does
not converge to the correct stationary distribution.

Fortunately, the parallel computing community has devel-
oped methods to directly transform sequential graph al-
gorithms into equivalent parallel graph algorithms using
graph colorings. Here we apply these techniques to obtain
the ergodic Chromatic parallel Gibbs sampler shown in

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin

Algorithm 2: The Chromatic Sampler
Input : k-Colored MRF
for For each of the k colors κi : i ∈ {1, . . . , k} do1

forall Variables Xj ∈ κi in the ith color do in parallel2
Execute Gibbs Update:3

X
(t+1)
j ∼ π

“
Xj |x(t+1)

Nj∈κ<i
,x

(t)
Nj∈κ>i

”
barrier end4

end5

Alg. 2. Let there be a k-coloring of the MRF such that
each vertex is assigned one of k colors and adjacent ver-
tices have different colors. Let κi denote the variables in
color i. Then the Chromatic sampler simultaneously draws
new values for all variables in κi before proceeding to κi+1.
The k-coloring of the MRF ensures that all variables within
a color are conditionally independent given the variables in
the remaining colors and can therefore be sampled inde-
pendently and in parallel.

By combining a classic result ([Bertsekas and Tsitsiklis,
1989, Proposition 2.6]) from parallel computing with the
original Geman and Geman [1984] proof of ergodicity for
the sequential Gibbs sampler one can easily show:

Proposition 3.1 (Graph Coloring and Parallel Execu-
tion). Given p processors and a k-coloring of an n-
variable MRF, the parallel Chromatic sampler is ergodic
and generates a new joint sample in running time:

O

(
n

p
+ k

)
.

Proof. From [Bertsekas and Tsitsiklis, 1989, Proposition
2.6] we know that the parallel execution of the Chromatic
sampler corresponds exactly to the execution of a sequen-
tial scan Gibbs sampler for some permutation over the vari-
ables. The running time can be easily derived:

O

(
k∑

i=1

⌈
|κi|
p

⌉)
= O

(
k∑

i=1

(
|κi|
p

+ 1
))

= O

(
n

p
+ k

)
.

Therefore, given sufficient parallel resource (p ∈ O(n))
and a k-coloring of the MRF, the parallel Chromatic sam-
pler has running-time O(k), which for many MRFs is con-
stant in the number of vertices. It is important to note that
this parallel gain directly results in a factor of p reduction
in the mixing time.

Unfortunately, constructing the minimal coloring of a gen-
eral MRF is NP-Complete. However, for many common
models the optimal coloring can be quickly derived. For ex-
ample, given a plate diagram, we can typically compute an
optimal coloring of the plates, which can then be applied to
the complete model. When an optimal coloring cannot be
trivially derived, we find simple graph coloring heuristics
(see Kubale [2004]) perform well in practice.

3.1 Properties of 2-Colorable Models
Many popular models in machine learning have natural
two-colorings. For example, Latent Dirichlet Allocation,
the Indian Buffet process, the Boltzmann machine, hid-
den Markov models, and the grid models commonly used
in computer vision all have two-colorings. For these mod-
els, the Chromatic sampler provides substantial insight into
properties of the Synchronous sampler. The following the-
orem relates the Synchronous Gibbs sampler to the Chro-
matic sampler in the two-colorable setting and provides a
method to recover two ergodic chains from a single Syn-
chronous Gibbs chain:

Theorem 3.2 (2-Color Ergodic Synchronous Samples).
Let (X(t))m

t=0 be the non-ergodic Markov chain con-
structed by the Synchronous Gibbs sampler (Alg. 1) then
using only (X(t))m

t=0 we can construct two ergodic chains
(Y (t))m

t=0 and (Z(t))m
t=0 which are conditionally indepen-

dent given X(0) and correspond to the simultaneous execu-
tion of two Chromatic samplers (Alg. 2).

Proof. We split the chain (X(t))m
t=0 = (X(t)

κ1 , X
(t)
κ2)m

t=0

over the two colors and then construct the chains (Y (t))m
t=0

and (Z(t))m
t=0 by simulating the two Chromatic Gibbs sam-

plers, which each advance only one color at a time condi-
tioned on the other color (as illustrated in Fig. 1):

(
Y (t)

)m

t=0
=

[(
X

(0)
κ1

X
(1)
κ2

)
,

(
X

(2)
κ1

X
(1)
κ2

)
,

(
X

(2)
κ1

X
(3)
κ2

)
, . . .

]
(
Z(t)

)m

t=0
=

[(
X

(1)
κ1

X
(0)
κ2

)
,

(
X

(1)
κ1

X
(2)
κ2

)
,

(
X

(3)
κ1

X
(2)
κ2

)
, . . .

]

Observe that no samples are shared between chains, and
given X(0) both chains are independent. Finally, because
both derived chains are simulated from the Chromatic sam-
pler they are provably ergodic.

Using the partitioning induced by the 2-coloring of the
MRF we can analytically construct the invariant distribu-
tion of the Synchronous Gibbs sampler:

Theorem 3.3 (Invariant Distribution of Sync. Gibbs).
Let (Xκ1 , Xκ2) = X be the partitioning of the variables
over the two colors, then the invariant distribution of the
Synchronous Gibbs sampler is the product of the marginals
π(Xκ1)π(Xκ2).

Proof. Let the current state of the sampler be X =
(Xκ1 , Xκ2) and the result of a single Synchronous Gibbs
update be X ′ = (X ′

κ1
, X ′

κ2
). By definition the Syn-

chronous Gibbs update simulates X ′
κ1
∼ π(x′κ1

|xκ2) and
X ′

κ2
∼ π(x′κ2

|xκ1). Therefore the transition kernel for the
Synchronous Gibbs sampler is:

K(x′ |x) = π(x′κ1
|xκ2)π(x′κ2

|xκ1)

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

x1
(0)

x2
(0)

x1
(1)

x2
(1)

x1
(2)

x2
(2)

x1
(3)

x2
(3)

(a) Synchronous Chain

x1
(0) x1

(0)

x2
(1)x2

(0) x2
(0)

x1
(1) x1

(2)

x2
(1)x2

(2)

x1
(1) x1

(2)

x2
(3)x2

(2)

x1
(3)

Ergodic Chain 1 Ergodic Chain 2

(b) Two Ergodic Chains

Figure 1: (a) Execution of a two colored model using the synchronous Gibbs sampler. The dotted lines represent dependencies between
samples. (b) Two ergodic chains obtained by executing the Synchronous Gibbs sampler. Note that ergodic sums with respect to marginals
are equivalent to those obtained using the Synchronous sampler.

We can easily show that π(Xκ1)π(Xκ2) is the invariant dis-
tribution of the Synchronous Gibbs sampler:

P (x′) =
∑

x

K(x′ |x)π(x)

=
∑
xκ1

∑
xκ2

π(x′κ1
|xκ2)π(x′κ2

|xκ1)π(xκ1)π(xκ2)

=
∑
xκ1

∑
xκ2

π(xκ1 , x
′
κ2

)π(x′κ1
, xκ2)

= π(x′κ1
)π(x′κ2

)

A useful consequence of Theorem 3.3 is that when comput-
ing ergodic averages over sets of variables with the same
color, we can directly use the non-ergodic Synchronous
samples and still obtain convergent estimators:

Corollary 3.4 (Monochromatic Marginal Ergodicity).
Given a sequence of samples (x(t))m

t=0 drawn from the
Synchronous Gibbs sampler on two-colorable model, em-
pirical expectations computed with respect to single color
marginals are ergodic:

∀f, i ∈ 1, 2 : lim
m→∞

1
m

m∑
t=0

f(x(t)
κi

) a.s.−−→ Eπ [f(Xκi
)]

Corollary 3.4 therefore justifies many applications where
the Synchronous Gibbs sampler is used to estimate sin-
gle variables marginals and explains why the Synchronous
Gibbs sampler performs well in these settings. However,
Corollary 3.4 also highlights the danger of computing em-
pirical expectations over variables that span both colors
without splitting the chains as shown in Theorem 3.2.

We have shown that both the Chromatic sampler and the
Synchronous sampler can provide ergodic samples. How-
ever the Chromatic sampler is clearly superior when the
number of processors is less than the half the number of
vertices (p < n/2) since it will advance a single chain
twice as fast as the Synchronous sampler.

4 THE PARALLEL SPLASH SAMPLER
The Chromatic sampler provides a linear speedup for
single-chain sampling, advancing the Markov chain for a
k-colorable model in time O

(
n
p + k

)
rather than O(n).

Algorithm 3: Parallel Splash Sampler
Input: Maximum treewidth wmax
Input: Maximum Splash size hmax
while t ≤ ∞ do1

// Make p bounded treewidth Splashes

{JSi}
p
i=1 ← ParSplash(wmax, hmax, x

(t));33
// Calibrate each junction trees

{JSi}
p
i=1 ← ParCalibrate(x(t), {JSi}

p
i=1);55

// Sample each Splash
{xSi}

p
i=1 ← ParSample({JSi}

p
i=1);77

// Advance the chain

x(t+1) ←
n

xS1 , ..., xS1 , x
(t)

¬
Sp

i=1 Si

o
8

Unfortunately, some models possess strongly correlated
variables and complex dependencies, which can cause the
Chromatic sampler to mix prohibitively slowly.

In the single processor setting, a common method to accel-
erate a slowly mixing Gibbs sampler is to introduce block-
ing updates [Barbu and Zhu, 2005, Jensen and Kong, 1996,
Hamze and de Freitas, 2004]. In a blocked Gibbs sam-
pler, blocks of strongly coupled random variables are sam-
pled jointly conditioned on their combined Markov blan-
ket. The blocked Gibbs sampler improves mixing by en-
abling strongly coupled variables to update jointly when in-
dividual conditional updates would cause the chain to mix
too slowly.

To improve mixing in the parallel setting we introduce
the Splash sampler (Alg. 3), a general purpose blocking
sampler. For each joint sample, the Splash sampler ex-
ploits parallelism both to construct multiple random blocks,
called Splashes, and to accelerate the joint sampling of each
Splash. To ensure each Splash can be safely and efficiently
sampled in parallel, we developed a novel Splash genera-
tion algorithm which incrementally builds multiple condi-
tionally independent bounded treewidth junction trees for
every new sample. In the initial rounds of sampling, the
Splash algorithm uses a novel adaptation heuristic which
groups strongly dependent variables together based on the
state of the chain. Adaptation is then disabled after a finite
number of rounds to ensure ergodicity.

We present the Splash sampler in three parts. First, we
present the parallel algorithm used to construct multiple
conditionally independent Splashes. Next, we describe the
parallel junction tree sampling procedure used to jointly
sample all variables in a Splash. Finally, we present our

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin

Algorithm 4: ParSplash: Parallel Splash Generation
Input: Maximum treewidth wmax
Input: Maximum Splash size hmax
Output: Disjoint Splashes {S1, . . . ,Sp}
do in parallel on processor i ∈ {1, . . . , p}1

r ← NextRoot(i) // Unique roots33
Si ← {r} // Add r to splash4
B ← Nr // Add neighbors to boundary5
V ← {r} ∪ Nr // Visited vertices6
JSi ← JunctionTree({r})7
while (|Si| < hmax)

V
(|B| > 0) do8

v ← NextVertexToExplore(B)1010
MarkovBlanketLock(Xv)11
// Check that v and its neighbors Nv

are not in other Splashes.

safe←
˛̨̨
({v} ∪ Nv) ∩

“S
j 6=i Sj

”˛̨̨
= 012

JSi+v ← ExtendJunctionTree(JSi , v)13
if safe

V
TreeWidth(JSi+v)< wmax then14

JSi ← JSi+v // Accept new tree15
Si ← Si ∪ {v}16
B ← B ∪ (Nv\V) // Extend boundary1818
V ← V ∪Nv // Mark visited19

MarkovBlanketFree(Xv)20

Splash adaptation heuristic which sets the priorities used
during Splash generation.

4.1 Parallel Splash Generation

The Splash generation algorithm (Alg. 4) uses p processors
to incrementally build p disjoint Splashes in parallel. Each
processor grows a Splash rooted at a unique vertex in the
MRF (Line 3). To preserve ergodicity we require that no
two roots share a common edge in the MRF, and that every
variable is a root infinitely often.

Each Splash is grown incrementally using a best first
search (BeFS) of the MRF. The exact order in which
variables are explored is determined by the call to
NextVertexToExplore(B) on Line 10 of Alg. 4
which selects (and removes) the next vertex from the
boundary B. In Fig. 2 we plot several simultaneous
Splashes constructed using a first-in first-out (FIFO) order-
ing (Fig. 2(b)) and a prioritized ordering (Fig. 2(d)).

The Splash boundary is extended until there are no remain-
ing variables that can be safely added or the Splash is suffi-
ciently large. A variable cannot be safely added to a Splash
if sampling the resulting Splash is excessively costly (vi-
olates a treewidth bound) or if the variable or any of its
neighbors are members of other Splashes (violates condi-
tional independence of Splashes).

To bound the computational complexity of sampling, and
later to jointly sample the Splash, we rely on junction trees.
A junction tree, or clique graph, is an undirected acyclic
graphical representation of the joint distribution over a col-
lection of random variables. For a Splash containing the
variables XS , we construct a junction tree (C, E) = JS

Algorithm 5: ExtendJunctionTree Algorithm
Input: The original junction tree (C, E) = JS .
Input: The variable Xi to add to JS
Output: JS+i

Define : Cu as the clique created by eliminating u ∈ S
Define : V[C] ∈ S as the variable eliminated when creating C
Define : t[v] as the time v ∈ S was added to S
Define : P[v] ∈ Nv ∩ S as the next neighbor of v to be

eliminated.
Ci ← (Ni ∩ S) ∪ {i}1
P[i]← arg maxv∈Ci\{i} t[v]2
// ----------- Repair RIP -------------
R← Ci\ {i} // RIP Set3
v ← P[i]4
while |R| > 0 do5

Cv ← Cv ∪R // Add variables to parent6
w ← arg maxw∈Cv\{v} t[w] // Find new parent7
if w = P[v] then8
R ← (R\Ci)\ {i}9

else10
R ← (R∪ Ci)\ {i}11
P[v]← w // New parent12

v ← P[v] // Move upwards13

representing the conditional distribution π(XS |x−S). The
vertices C ∈ C are often called cliques and represent a sub-
set of the indices (i.e., C ⊆ S) in the Splash S. The cliques
satisfy the constraint that for every factor domain A ∈ F
there exists a clique C ∈ C such that A∩S ⊆ C. The edges
E of the junction tree satisfy the running intersection prop-
erty (RIP) which ensures that all cliques sharing a common
variable form a connected tree.

The computational complexity of a inference, and conse-
quently sampling in a junction tree, is exponential in the
treewidth; one less than number of variables in the largest
clique. Therefore, to evaluate the computational cost of
adding a new variable Xv to the Splash, we need an effi-
cient method to extend the junction tree JS over XS to a
junction tree JS+v over XS∪{v} and evaluate the resulting
treewidth.

To efficiently build incremental junction trees, we devel-
oped a novel junction tree extension algorithm (Alg. 5)
which emulates standard variable elimination, with vari-
ables being eliminated in the reverse of the order they are
added to the Splash (e.g., if Xi is added to JS then Xi

is eliminated before all XS). Because each Splash grows
outwards from the root, the resulting elimination ordering
is optimal on tree MRFs and typically performs well on
cyclic MRFs.

The incremental junction tree extension algorithm (Alg. 5)
begins by eliminating Xi and forming the new clique Ci =
(Ni ∩ S) ∪ {i} which is added JS+i. We then attach Ci

to the most recently added clique CP[i] which contains a
variable in Ci (CP[i] denotes the parent of Ci). We then
restore the RIP by propagating the newly added variables
back up the tree. Letting R = Ci\ {i}, we insert R into its

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

(a) Noisy (b) FIFO Splashes (c) FIFO Splashes (+) (d) Priority Splashes (e) Priority Splashes (+)

Figure 2: Different Splashes constructed on a 200 × 200 image denoising grid MRF. (a) A noisy sunset image. Eight Splashes of
treewidth 5 were constructed using the FIFO (b) and priority (d) ordering. Each splash is shown in a different shade of gray and the
black pixels are not assigned to any Splash. The priorities were obtained using the adaptive heuristic. In (c) and (e) we zoom in on the
Splashes to illustrate their structure and the black pixels along the boundary needed to maintain conditional independence.

56	
 124	
 245	
 45	
 4	

2	

4	
 5	

1	

6	

3	

1256	
 1245	
 245	
 45	
 4	
 1236	

Figure 3: Incremental Junction Tree Example: The junction
tree on the top comprises the subset of variables {1,2,4,5,6} of
the MRF (center). The tree is formed by the variable elimination
ordering {6,1,2,5,4} (reading the underlined variables of the tree
in reverse). To perform an incremental insertion of variable 3, we
first create the clique formed by the elimination of 3 ({1,2,3,6})
and insert it into the end of the tree. Its parent is set to the latest
occurrence of any of the variables in the new clique. Next the
set {1,2,6} is inserted into its parent (boldface variables), and its
parent is recomputed in the same way.

parent clique CP[i]. The RIP condition is now satisfied for
variables in R which were already in CP[i]. The parent for
CP[i] is then recomputed, and any unsatisfied variables are
propagated up the tree in the same way. We demonstrate
this algorithm with a simple example in Fig. 3.

To ensure that simultaneously constructed Splashes are
conditionally independent, we develop the Markov blanket
locking (MBL) protocol which associates a lock with each
variable in the model. The Markov blanket lock for variable
Xv is obtained by acquiring the read-locks on all neighbor-
ing variables XNv

and the write lock on Xv . Locks are ac-
quired and released using a canonical ordering of the vari-
ables to prevent deadlocks.

Once the MarkovBlanketLock(Xv) has been ac-
quired, no other processor can assign Xv or any of it neigh-
bors XNv to a Splash. Therefore, we can safely test if
Xv or any of its neighbors XNv

are currently assigned
to other Splashes. Since we only add Xv to the Splash if
both Xv and all its neighbors are currently unassigned to
other Splashes, there will never be an edge in the MRF that
connects two Splashes. Consequently, simultaneously con-
structed Splashes are conditionally independent given all
remaining unassigned variables.

4.2 Parallel Splash Sampling
Once we have constructed p conditionally independent
Splashes {S1}p

i=1, we jointly sample each Splash by draw-
ing from π(XSi

|x−Si
) in parallel. This is accomplished by

calibrating the junction trees {JSi
}p

i=1, and then running
backward-sampling starting at the root to jointly sample
all the variables in each Splash. We also use the calibrated
junction trees to construct Rao-Blackwellized marginal es-
timators. If the treewidth or the size of each Splash is large,
it may be beneficial to construct fewer Splashes, and in-
stead assign multiple processors to accelerate the calibra-
tion and sampling of individual junction trees.

To calibrate the junction tree we use the ParCalibrate
function. The ParCalibrate function constructs all
clique potentials in parallel by computing the products of
the assigned factors conditioned on the variables not in the
Splash. Finally, parallel belief propagation is used to cali-
brate the tree by propagating messages in parallel following
the optimal forward-backward schedule.

Parallel backward-sampling is accomplished by the func-
tion ParSample which takes the calibrated junction
tree and draws a new joint assignment in parallel. The
ParSample function begins by drawing a new joint as-
signment for the root clique using the calibrated marginal.
Then in parallel each child is sampled conditioned on the
parent assignment and the messages from the children.

4.3 Adaptive Splash Generation
As discussed earlier, the order in which variables are ex-
plored when constructing a Splash is determined on Line 10
in the ParSplash algorithm (Alg. 4). We propose a sim-
ple adaptive prioritization heuristic, based on the current
assignment to x(t), that prioritizes variables at the bound-
ary of the current tree which are strongly coupled with
variables already in the Splash. We assign each variable
Xv ∈ B a score using the likelihood ratio:

s[Xv] =

∣∣∣∣∣∣
∣∣∣∣∣∣log

∑
x π
(
XS , Xv = x |X−S = x

(t)
−S

)
π
(
XS , Xv = x

(t)
v |X−S = x

(t)
−S

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

,

(4.1)

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin

(a) Early (b) Later

Figure 4: The update frequencies of each variable in the 200 ×
200 image denoising grid MRF for the synthetic noisy image
shown in Fig. 2(a). The brighter pixes have been prioritized higher
and are therefore updated more frequently. (a) The early update
counts are relatively uniform as the adaptive heuristic has not con-
verged on the priorities. (b) The final update counts are focused
on the boundaries of the regions in the model corresponding to
pixels that can be most readily changed by blocked steps.

and includes the variable with the highest score. Effec-
tively, Eq. (4.1) favors variables with greater average log
likelihood than conditional log likelihood. We illustrate the
consequence of applying this metric to an image denois-
ing task in which we denoise the synthetic image shown
in Fig. 2(a). In Fig. 4 we show a collection of Splashes
constructed using the score function Eq. (4.1). To see how
priorities evolve over time, we plot the update frequencies
early (Fig. 4(a)) and later (Fig. 4(b)) in the execution of the
Splash scheduler.

To ensure the chain remains ergodic, we disable the prior-
itized tree growth after a finite number of iterations, and
replace it with a random choice of variables to add (we call
this vanishing adaptation). Indeed, a Gibbs chain cannot be
ergodic if the distribution over variables to sample is a func-
tion of the current state of the chain. This result may appear
surprising, as it contradicts Algorithm 7.1 of Levine and
Casella [2006], of which our adaptive algorithm is an ex-
ample: Levine and Casella claim this to be a valid adaptive
Gibbs sampler. We are able to construct a simple counter
example, using two uniform independent binary random
variables (see Appendix C), thus disproving the claim. By
contrast, we show in Appendix B that our Splash sampler
with vanishing adaptation is ergodic:

Theorem 4.1 (Splash Sampler Ergodicity). The adaptive
Splash sampler with vanishing adaptation is ergodic and
converges to the true distribution π.

5 EXPERIMENTS

We implemented an optimized C++ version of both the
Chromatic and Splash samplers for arbitrary discrete fac-
torized models and all our code has been released1 along
with a user-friendly Matlab interface. Our implementation
was built using the open-source GraphLab API [Low et al.,
2010]. The GraphLab API provides the graph based lock-
ing routines needed to implement the Markov blanket lock-

1http://www.select.cs.cmu.edu/code

ing protocol. The GraphLab API also substantially sim-
plifies the design and implementation of the Chromatic
sampler, which uses the highly-tuned lock-free GraphLab
scheduler and built-in graph coloring tools.

Although Alg. 3 is presented as a sequence of synchronous
parallel steps, our implementation splits these steps over
separate processors to maximize performance and elim-
inate the need for threads to join between phases. We
also implemented the parallel junction tree calibration and
sampling algorithms using the GraphLab API. However,
we found that for the typically small maximum treewidth
used in our experiments, the overhead associated the addi-
tional parallelism overrode any gains. Nonetheless, when
we made the treewidth sufficiently large (e.g., 106 sized
factors) we were able to obtain 13×-speedup on 32 cores.

To evaluate the proposed algorithms in both the weakly
and strongly correlated setting we selected two represen-
tative large-scale models. In the weakly correlated setting
we used a 40, 000 variable 200 × 200 grid MRF similar
to those used in image processing. The latent pixel values
were discretized into 5 states. Gibbs sampling was used to
compute the expected pixel assignments for the synthetic
noisy image shown in Fig. 2(a). We used Gaussian node po-
tentials centered around the pixel observations with σ2 = 1
and Ising-Potts edge potentials of the form exp(−3δ(xi 6=
xj)). To test the algorithms in the strongly correlated set-
ting, we used the CORA-1 Markov Logic Network (MLN)
obtained from Domingos [2009]. This large real-world fac-
torized model consists of over 10, 000 variables and 28, 000
factors, and has a much higher connectivity and higher or-
der factors than the pairwise MRF.

In Fig. 5 we present the results of running both algorithms
on both models using a state-of-the-art 32 core Intel Ne-
halem (X7560) server with hyper-threading disabled. We
plot un-normalized log-likelihood and across chain vari-
ance in-terms of wall-clock time. In Fig. 5(a) and Fig. 5(e)
we plot the un-normalized log-likelihood of the last sam-
ple as a function of time. While in both cases the Splash
algorithm out-performs the chromatic sampler, the differ-
ence is more visible in the CORA-1 MLN. We found that
the adaptation heuristic had little effect in likelihood max-
imization on the CORA-1 MLN, but did improve perfor-
mance on the denoising model by focusing the Splashes
on the higher variance regions. In Fig. 5(b) and Fig. 5(f)
we plot the variance in the expected variable assignments
across 10 independent chains with random starting points.
Here we observe that for the faster mixing denoising model,
the increased sampling rate of the Chromatic sampler leads
to a greater reduction in variance while in the slowly mix-
ing CORA-1 MLN only the Splash sampler is able to re-
duce the variance.

To illustrate the parallel scaling we plot the number of sam-
ples generated in a 20 seconds (Fig. 5(c) and Fig. 5(d)) as

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

0 20 40 60 80 100
−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2
x 10

5

Runtime (seconds)

Lo
gl

ik
el

ih
oo

d

Splash(8, 3, 1)

Splash(8, 3, 0)

Splash(1, 3, 1)

Splash(1, 3, 0)

Chromatic(8)

Chromatic(1)

(a) Denoise Likelihood

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Runtime (seconds)

V
ar

ia
nc

e Splash(8, 3, 0)
Splash(8, 3, 1)

Splash(1, 3, 0)

Splash(1, 3, 1)

Chromatic(1)

Chromatic(8)

(b) Denoise Variance

0 10 20 30 40
0

1

2

3

4

5

6

7
x 10

7

Number of Cores

N
um

be
r

of
 S

am
pl

es

Chromatic

Splash

(c) Denoise Samples Count

0 10 20 30 40
0

5

10

15

20

25

30

35

Number of Cores

S
pe

ed
up

Chromatic

Splash

Ideal

(d) Denoise Speedup

0 20 40 60 80 100
−8.4

−8.2

−8

−7.8

−7.6

−7.4
x 10

4

Runtime (seconds)

Lo
gl

ik
el

ih
oo

d

Splash(8, 5)

Splash(8, 2)

Splash(1, 5)
Splash(1, 2)

Chromatic(8)

Chromatic(1)

(e) CORA-1 Likelihood

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Runtime (seconds)

V
ar

ia
nc

e Splash(1, 5)

Splash(1, 2)
Splash(8, 2)

Splash(8, 5)

Chromatic(8)

Chromatic(1)

(f) CORA-1 Variance

0 10 20 30 40
0

1

2

3

4

5

6
x 10

7

Number of Cores

N
um

be
r

of
 S

am
pl

es

Chromatic

Splash

(g) CORA-1 Samples Count

0 10 20 30 40
0

5

10

15

20

25

30

35

Number of Cores

S
pe

ed
up

Splash

Ideal

Chromatic

(h) CORA-1 Speedup

Figure 5: Comparison of Chromatic sampler and the Splash sampler at different settings (i.e., Chromatic(p), Splash(p, wmax, adaptation)
for p processors and treewidth wmax) on the synthetic image denoising grid model and the Cora Markov logic network. Adaptation was
not used in the CORA-1 MLN. (a,e) The un-normalized log-likelihood plotted as a function of running-time. (b,f) The variance in the
estimator of the expected assignment computed across 10 independent chains with random starting points. (c,g) The total number of
variables sampled in a 20 second window plotted as a function of the number of cores. (d,h) The speedup in number of samples drawn
as a function of the number of processors.

well as the speedup in sample generation (Fig. 5(c) and
Fig. 5(d)). The speedup is computed by measuring the mul-
tiple of the number of samples generated in 20 seconds us-
ing a single processor. The ideal speedup is linear with 32×
speedup on 32 cores.

We find that the Chromatic sampler typically generates an
order of magnitude more samples per second than the more
costly Splash sampler. However, if we examine speedup
curves we see that the larger cost associated with the Splash
construction and inference contributes to more exploitable
coarse grain parallelism. Interestingly, in Fig. 5(h) we see
that the Splash sampler exceeds the ideal scaling. This is
actually a consequence of the high connectivity forcing
each of the parallel Splashes to be smaller as the number of
processors increases. As a consequence the cost of comput-
ing each Splash is reduced and the sampling rate increases.
However, this also reduces some of the benefit from the
Splash procedure as the size of each Splash is smaller re-
sulting a potential increase in mixing time.

6 CONCLUSION
We have proposed two ergodic parallel single chain Gibbs
samplers for high-dimensional models: the Chromatic sam-
pler, and the Splash sampler, both implemented using the
GraphLab framework. The Chromatic parallel Gibbs sam-
pler can be applied where single variable updates still mix
well, and uses graph coloring techniques to schedule condi-
tionally independent updates in parallel. We related Chro-
matic sampler to the commonly used (but non-ergodic)

Synchronous Gibbs sampler, and showed that we can re-
cover two ergodic chains from a single non-ergodic Syn-
chronous Gibbs chain.

In settings with tightly couples variables, the parallelism
afforded by the Chromatic Gibbs sampler may be insuffi-
cient to achieve rapid mixing. We therefore proposed the
Splash Gibbs sampler which incrementally constructs mul-
tiple conditionally independent bounded treewidth blocks
(Splashes) in parallel. To construct the Splash sampler we
developed a novel incremental junction tree construction
algorithm which quickly and efficiently updates the junc-
tion tree as new variables are added. We further proposed
a procedure to accelerate burn-in by explicitly grouping
strongly dependent variables, which is disabled after the
initial samples are drawn to ensure ergodicity. An interest-
ing topic for future work is whether one can design an adap-
tive parallel sampler (i.e., one that continually modifies its
behavior depending on the current state of the chain) that
still retains ergodicity.

Acknowledgments

We thank Yee Whye Teh and Maneesh Sahani for help-
ful discussions. This work is supported by the ONR Young
Investigator Program grant N00014-08-1-0752, the ARO
under MURI W911NF0810242, and the ONR PECASE-
N00014-10-1-0672. Joseph Gonzalez is supported by a
Graduate Research Fellowship from the National Science
Foundation.

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin

References
M. Kuss and C. E. Rasmussen. Assessing approximate inference

for binary gaussian process classification. J. Mach. Learn. Res.,
6, 2005.

A. Barbu and S. Zhu. Generalizing swendsen-wang to sampling
arbitrary posterior probabilities. IEEE Trans. Pattern Anal.
Mach. Intell., 27(8), 2005.

F. Doshi-Velez, D. Knowles, S. Mohamed, and Z. Ghahramani.
Large scale nonparametric bayesian inference: Data paralleli-
sation in the indian buffet process. In NIPS 22, 2009.

D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed
inference for latent dirichlet allocation. In NIPS, 2007.

A. Asuncion, P. Smyth, and M. Welling. Asynchronous dis-
tributed learning of topic models. In NIPS, 2008.

F. Yan, N. Xu, and Y. Qi. Parallel inference for latent dirichlet
allocation on graphics processing units. In NIPS, 2009.

C. S. Jensen and A. Kong. Blocking gibbs sampling for linkage
analysis in large pedigrees with many loops. In American Jour-
nal of Human Genetics, 1996.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. Hellerstein. Graphlab: A new framework for parallel ma-
chine learning. In UAI, 2010.

S. Geman and D. Geman. Stochastic relaxation, gibbs distribu-
tions, and the bayesian restoration of images. In PAMI, 1984.

P. A. Ferrari, A. Frigessi, and R. H. Schonmann. Convergence
of some partially parallel gibbs samplers with annealing. The
Annals of Applied Probability, 3(1), 1993.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1989.

M. Kubale. Graph Colorings. American Mathematical Society,
2004.

F. Hamze and N. de Freitas. From fields to trees. In UAI, 2004.

R. A. Levine and G. Casella. Optimizing random scan gibbs sam-
plers. J. Multivar. Anal., 97(10), 2006.

P. Domingos. Uw-cse mlns, 2009. URL alchemy.cs.
washington.edu/mlns/cora.

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

A SYNCHRONOUS GIBBS SAMPLER DIVERGENCE

We illustrate how the Synchronous sampler can converge to the wrong distribution using two simple cases. The first case
uses two Gaussian variables while the second case uses two discrete binary variables. In both cases we observe that the
resulting distribution preserves the marginals.

A.1 Synchronous Gaussian Sampling

Suppose we draw
(
X

(t−1)
1 , X

(t−1)
2

)
from the multivariate normal distribution:(

X
(t−1)
1

X
(t−1)
2

)
∼ N

[(
µ1

µ2

)
,

(
σ2

1 ρ
ρ σ2

2

)]

and then use the Synchronous Gibbs sampler to generate
(
X

(t)
1 , X

(t)
2

)
given

(
X

(t−1)
1 , X

(t−1)
2

)
. One can easily show that:

(
X

(t)
1

X
(t)
2

)
∼ N

[(
µ1

µ2

)
,

(
σ2

1
ρ3

σ2
1σ2

2
ρ3

σ2
1σ2

2
σ2

2

)]

where the covariance term is not preserved. Note, however that the marginals remain consistent.

A.2 Discrete Case

In the discrete case, consider the two binary variable discrete model P (X1, X2) where

P (X1 = x1, X2 = x2) ∝

{
ε x1 6= x2

1− ε x1 = x2

for some 0 < ε < 1.

The transition matrix of the Synchronous sampler which samples from both variables simultaneously is therefore:

(0,0) (0,1) (1,0) (1,1)
(0,0) (1− ε)2 (1− ε)ε (1− ε)ε ε2

(0,1) (1− ε)ε ε2 (1− ε)2 (1− ε)ε
(1,0) (1− ε)ε (1− ε)2 ε2 (1− ε)ε
(1,1) ε2 (1− ε)ε (1− ε)ε (1− ε)2

which has the incorrect stationary distribution:

P (X1 = x1, X2 = x2) ∝ 1

Observe however, that the marginals P (X1) and P (X2) remain consistent.

B Proof of Theorem 4.1

The proof of Theorem 4.1 follows closely the original proof of the Gibbs sampler provided by Geman and Geman [1984]
but with the modification of the Splash blocking. We prove Theorem 4.1 in three parts. First we show that π is the invariant
distribution:

π
(
X(t+1)

)
=
∑

x

K
(
X(t+1) |X(t) = x

)
π
(
X(t) = x

)
(B.1)

of the Splash sampler. Second, we show that the Splash sampler forgets its starting state:

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤ γt/n (B.2)

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin

Finally, we show that the sampler draws from π in the limit:

lim
t→∞

sup
y,x

∣∣∣∣∣∣P(X(t) = y |X(0) = x
)
− π(y)

∣∣∣∣∣∣
1

= 0 (B.3)

B.1 π Invariance

Because vanishing adaptation is used we show π invariance for the Splash sampler without adaptation: where the choice
of Splash S(t) does not depend on the state of the chain. However, we do allow the choice of the Splash to depend on all
previous Splash choices

{
S(0), . . . ,S(t)

}
.

The transition kernel for the Splash sampler given the Splash S is defined as:

P
(
X(t+1) |x(t)

)
=
∑
S

P
(
S | S(0) . . .S(t−1)

)
1
[
X

(t+1)
−S = X

(t)
−S

]
π
(
X

(t+1)
S |X(t+1)

−S

)
(B.4)

Substituting Eq. (B.4) into Eq. (B.1) we obtain:

P
(
X(t+1)

)
=

∑
X(t)

P
(
X(t+1) |X(t)

)
π
(
X(t)

)
(B.5)

P
(
X(t+1)

)
=

∑
X(t)

∑
S

P
(
S | S(0) . . .S(t)

)
1
[
x

(t+1)
−S = x

(t)
−S

]
π
(
X

(t+1)
S |X(t+1)

−S

)
π
(
X(t)

)
(B.6)

=
∑
S

P
(
S | S(0) . . .S(t)

)
π
(
X

(t+1)
S |X(t+1)

−S

)∑
X(t)

1
[
x

(t+1)
−S = x

(t)
−S

]
π
(
X(t)

)
(B.7)

=
∑
S

P
(
S | S(0) . . .S(t)

)
π
(
X

(t+1)
S |X(t+1)

−S

)
π
(
X

(t+1)
−S

)
(B.8)

=
∑
S

P
(
S | S(0) . . .S(t)

)
π
(
X(t+1)

)
(B.9)

= π
(
X(t+1)

)
(B.10)

B.2 Dependence on Starting State

We now show that the Splash sampler forgets its initial starting state. This is done by first showing that there is a pos-
itive probability of reaching any state after a bounded number of Splash operations. Then we use this strong notion of
irreducibility to setup a recurrence which bounds the dependence on the starting state.

The Splash algorithm sweeps across the roots ensuring that after ∆t ≤ n tree updates all variables are sampled at least once.
Define the time ti as the last time variable Xi was updated. Without loss of generality let’s assume that t1 < t2 < . . . < tn
(we can rearrange the variable ordering to achieve this). We then can bound the probability that after n Splashes we reach
state x given we were initially at state y,

P
(
X(n) = x |X(0) = y

)
≥

n∏
i=1

inf
x−i

π (Xi = xi |X−i = x−i) . (B.11)

Define the smallest conditional probability,

δ = inf
i,x

π (Xi = xi |X−i = x−i) . (B.12)

Then
P
(
X(n) = x |X(0) = y

)
≥ δn. (B.13)

Effectively, we are stating that π is irreducible since all the conditionals are positive. Using this we will now show that
there exists an γ such that 0 ≤ γ < 1 and

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤ γt/n. (B.14)

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

This is trivially true for t = 0. We can rewrite the left side of the above equation as

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1

= (B.15)

sup
x

∣∣∣∣∣∣∣∣sup
y

P
(
X(t) = x |X(0) = y

)
− inf

z
P
(
X(t) = x |X(0) = z

)∣∣∣∣∣∣∣∣
1

. (B.16)

Now we will bound the inner sup and inf terms. For t > n we can introduce a probability measure µ such that

sup
y

P
(
X(t) = x |X(0) = y

)
= sup

y

∑
w

P
(
X(t) = x |X(n) = w

)
P
(
X(n) = w |X(0) = y

)
(B.17)

≤ sup
µ≥δn

∑
w

P
(
X(t) = x |X(n) = w

)
µ(w) (B.18)

Then by defining the w∗ as
w∗ = arg sup

w
P
(
X(t) = x |X(n) = w

)
, (B.19)

we can easily construct the maximizing µ which places minimal mass δn mass on w except w∗ and places the remaining
mass on 1− (|Ω| − 1)δn on w∗. This leads to

sup
y

P
(
X(t) = x |X(0) = y

)
≤ (1− (|Ω| − 1)δn)P

(
X(t) = x |X(n) = w∗

)
+ (B.20)

δn
∑

w 6=w∗

P
(
X(t) = x |X(n) = w

)
. (B.21)

Similarly we define w∗ as the minimizing element in Ω

w∗ = arg inf
w

P
(
X(t) = x |X(n) = w

)
. (B.22)

We can then construct the lower bound,

inf
z

P
(
X(t) = x |X(0) = z

)
≥ (1− (|Ω| − 1)δn)P

(
X(t) = x |X(n) = w∗

)
+ (B.23)

δn
∑

w 6=w∗

P
(
X(t) = x |X(n) = w

)
. (B.24)

Taking the difference, we get

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1

= sup
x

∣∣∣∣∣∣∣∣sup
y

P
(
X(t) = x |X(0) = y

)
− inf

z
P
(
X(t) = x |X(0) = z

)∣∣∣∣∣∣∣∣
1

(B.25)

≤ sup
x
|| (1− (|Ω| − 1)δn)P

(
X(t) = x |X(n) = w∗

)
+ δn

∑
w 6=w∗

P
(
X(t) = x |X(n) = w

)
−

(1− (|Ω| − 1)δn)P
(
X(t) = x |X(n) = w∗

)
− δn

∑
w 6=w∗

P
(
X(t) = x |X(n) = w

)
||1. (B.26)

We can bound the sum terms

δn
∑

w 6=w∗

P (X(t) = x |X(n) = w)− δn
∑

w 6=w∗

P (X(t) = x |X(n) = w) ≤

δn
∑
w

P (X(t) = x |X(n) = w)− δn
∑
w

P (X(t) = x |X(n) = w) = 0,

and then simplify Eq. (B.26) to obtain

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤

(1− (|Ω| − 1)δn) sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(n) = y
)
−P

(
X(t) = x |X(n) = z

)∣∣∣∣∣∣
1
.

(B.27)

Joseph E. Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin

We can repeat this procedure t/n times to the term
∣∣∣∣P (X(t) = x |X(n) = y

)
−P

(
X(t) = x |X(n) = z

)∣∣∣∣
1

on the right
side of the above equation to obtain the desired result,

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤ (1− (|Ω| − 1)δn)t/n

. (B.28)

B.3 Convergence in distribution

We can use Eq. (B.28) along with π invariance to finish the proof,

lim
t→∞

sup
y,x

∣∣∣∣∣∣P(X(t) = y |X(0) = x
)
− π (y)

∣∣∣∣∣∣
1

= lim
t→∞

sup
y,x

∣∣∣∣∣
∣∣∣∣∣P(X(t) = y |X(0) = x

)
−
∑

z

π (y | z) π (z)

∣∣∣∣∣
∣∣∣∣∣
1

(B.29)

= lim
t→∞

sup
y,x

∣∣∣∣∣
∣∣∣∣∣P(X(t) = y |X(0) = x

)
−
∑

z

P
(
X(t) = y |X(0) = z

)
π (z)

∣∣∣∣∣
∣∣∣∣∣
1

(B.30)

= lim
t→∞

sup
y,x

∣∣∣∣∣
∣∣∣∣∣∑

z

π (z)
(
P
(
X(t) = y |X(0) = x

)
−P

(
X(t) = y |X(0) = z

))∣∣∣∣∣
∣∣∣∣∣
1

(B.31)

≤ lim
t→∞

sup
y,x,z

∣∣∣∣∣∣P(X(t) = y |X(0) = x
)
−P

(
X(t) = y |X(0) = z

)∣∣∣∣∣∣
1

(B.32)

≤ lim
t→∞

(1− (|Ω| − 1)δn)t/n (B.33)

= 0. (B.34)

C CONTINUOUS ADAPTATION IS NOT π-INVARIANT

Given the flexibility in scheduling Geman and Geman [1984] ascribed to the Gibbs sampler, one may consider the possibil-
ity that the Gibbs sampler could still be π invariant if we allowed the choice (shape) of Splashes to be adapted according to
the state of the sampler. Such a conjecture would seem reasonable since any individual Splash is invariant. Indeed, Levine
and Casella [2006] make a similar claim about Algorithm 7.1. Unfortunately, we can demonstrate, by means of a simple
counter example, that tuning the Splash (blocking) in general breaks π invariance even when we include all variables with
positive probability.

Consider the case of two uniform independent binary variables X1 and X2 with constant probability mass function

π(x1, x2) ∝ 1

We define an adaptive sampling procedure which picks a variable to sample uniformly at random if both variables have
the same assignment (x1 = x2). However, if the variables have different assignments (x1 6= x2), we pick the variable with
assignment 1 with 90% probability. Let the choice of variable to sample (Splash) be represented by P (S |X1, X2) where
S ⊆ {1, 2}.

Let (X1, X2) be the current state. Let (X ′
1, X

′
2) be the new state after one step of the procedure. Then we can define the

kernel transition P (X ′
1, X

′
2|X1, X2,S) as

P (X ′
1, X

′
2 | S = {1} , X1, X2) ∝ 1 [x′2 = x2]

P (X ′
1, X

′
2 | S = {2} , X1, X2) ∝ 1 [x′1 = x1]

Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

We can derive the distribution of (X ′
1, X

′
2) after taking one adaptive Splash step,

P (X ′
1 = x′1, X

′
2 = x′2) =

∑
x1,x2

∑
S

P (S |X1, X2)P (X ′
1, X

′
2 | S, X1, X2)P (X1, X2)

∝
∑

x1,x2

∑
S

P (S |X1, X2)P (X ′
1, X

′
2 | S, X1, X2)

∝
∑

x1,x2

P (S = {1} |X1, X2)1 [x′2 = x2] + P (S = {2} |X1, X2)1 [x′1 = x1]

∝

(∑
x1,x2

P (S = {1} |X1, X2)1 [x′2 = x2]

)
+

(∑
x1,x2

P (S = {2} |X1, X2)1 [x′1 = x1]

)

∝

(∑
x1

P (S = {1} |X1, X2 = x′2)

)
+

(∑
x2

P (S = {2} |X1 = x′1, X2)

)
= 1 [x′2 = 1] (0.5 + 0.1) + 1 [x′2 = 0] (0.9 + 0.1)

+ 1 [x′1 = 1] (0.5 + 0.1) + 1 [x′1 = 0] (0.9 + 0.1),

where the last step of the process is computing by substituting in the values of P (S |X1, X2) as defined by the adaptation
process.

The resulting distribution of P (X ′
1, X

′
2) is

x′1 x′2 P (X ′
1 = x′1, X

′
2 = x′2)

0 0 0.35
0 1 0.25
1 0 0.25
1 1 0.15

which clearly is not π. The procedure is therefore not π ergodic.

This counter example refutes the proof of Algorithm 7.1 in Levine and Casella [2006], and places conditions upon π-
invariance of the Gibbs sampler described in [Geman and Geman, 1984]. Specifically, simply sampling from every variable
infinitely frequently is insufficient for π-invariance. It is also necessary that the choice of variable to sample from not
depend on the state of the sampler.

