Reproducing kernel Hilbert spaces in Machine Learning

Arthur Gretton

Gatsby Computational Neuroscience Unit, Deepmind

Columbia Statistics, 2023

A motivation: comparing two samples

- Given: Samples from unknown distributions P and Q.
- Goal: do P and Q differ?

A real-life example: two-sample tests

\square Goal: do P and Q differ?

CIFAR 10 samples

Cifar 10.1 samples

Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests, ICML 2020
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

Training generative models

■ Have: One collection of samples X from unknown distribution P.
■ Goal: generate samples Q that look like P

LSUN bedroom samples P

Generated Q, MMD GAN

Training a Generative Adversarial Network
(Binkowski, Sutherland, Arbel, G., ICLR 2018),
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)

Testing goodness of fit

- Given: a model P and samples Q.
- Goal: is P a good fit for Q ?

Chicago crime data

Testing goodness of fit

- Given: a model P and samples Q.
- Goal: is P a good fit for Q ?

Chicago crime data

Model is Gaussian mixture with two components. Is this a good model?

Model comparison

- Have: two candidate models P and Q, and samples $\left\{x_{i}\right\}_{i=1}^{n}$ from reference distribution R
- Goal: which of P and Q is better?

P : two components
Q : ten components

Causality: observation vs intervention

Conditioning from observation: $\mathrm{E}[Y \mid A=a]=\sum_{x} \mathrm{E}[Y \mid a, x] p(x \mid a)$

From our observations of historical hospital data:
■ $P(Y=$ cured $A=$ pills $)=0.80$
■ $P(Y=$ cured $A=$ surgery $)=0.72$

Causality: observation vs intervention

Average causal effect (intervention): $\mathrm{E}\left[Y^{(a)}\right]=\sum_{x} \mathrm{E}[Y \mid a, x] p(x)$

From our intervention (making all patients take a treatment):
■ $P\left(Y^{\text {(pills })}=\right.$ cured $)=0.64$

- $P\left(Y^{\text {(surgery })}=\right.$ cured $)=0.75$

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality

Overview

1 Construction of RKHS
2 The maximum mean discrepancy
1 Two-sample testing
2 Training generative models
3 Conditional mean embeddings for causality
4 Relative goodness-of-fit testing with Stein's method
5 Testing independence and higher order interactions

Reproducing Kernel Hilbert Spaces

Kernels and feature space (1): XOR example

- No linear classifier separates red from blue

■ Map points to higher dimensional feature space:

$$
\phi(x)=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{1} x_{2}
\end{array}\right] \in \mathbb{R}^{3}
$$

Kernels and feature space (2): document classification

Kernels let us compare objects on the basis of features

Kernels and feature space (3): smoothing

Kernel methods can control smoothness and avoid overfitting/underfitting.

Outline: reproducing kernel Hilbert space

We will describe in order:
1 Hilbert space (very simple)
2 Kernel (lots of examples: e.g. you can build kernels from simpler kernels)
3 Reproducing property

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R}. A function $\langle\cdot, \cdot\rangle_{\mathcal{H}}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is an inner product on \mathcal{H} if
1 Linear: $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
2 Symmetric: $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
$3\langle f, f\rangle_{\mathcal{H}} \geq 0$ and $\langle f, f\rangle_{\mathcal{H}}=0$ if and only if $f=0$.
Norm induced by the inner product: $\|f\|_{\mathcal{H}}:=\sqrt{\langle f, f\rangle_{\mathcal{H}}}$
Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R}. A function $\langle\cdot, \cdot\rangle_{\mathcal{H}}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is an inner product on \mathcal{H} if
1 Linear: $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
2 Symmetric: $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
$3\langle f, f\rangle_{\mathcal{H}} \geq 0$ and $\langle f, f\rangle_{\mathcal{H}}=0$ if and only if $f=0$.
Norm induced by the inner product: $\|f\|_{\mathcal{H}}:=\sqrt{\langle f, f\rangle_{\mathcal{H}}}$
Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R}. A function $\langle\cdot, \cdot\rangle_{\mathcal{H}}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is an inner product on \mathcal{H} if
1 Linear: $\left\langle\alpha_{1} f_{1}+\alpha_{2} f_{2}, g\right\rangle_{\mathcal{H}}=\alpha_{1}\left\langle f_{1}, g\right\rangle_{\mathcal{H}}+\alpha_{2}\left\langle f_{2}, g\right\rangle_{\mathcal{H}}$
2 Symmetric: $\langle f, g\rangle_{\mathcal{H}}=\langle g, f\rangle_{\mathcal{H}}$
$3\langle f, f\rangle_{\mathcal{H}} \geq 0$ and $\langle f, f\rangle_{\mathcal{H}}=0$ if and only if $f=0$.
Norm induced by the inner product: $\|f\|_{\mathcal{H}}:=\sqrt{\langle f, f\rangle_{\mathcal{H}}}$
Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

Kernel

Definition

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} and a feature $\operatorname{map} \phi: \mathcal{X} \rightarrow \mathcal{H}$ such that $\forall x, x^{\prime} \in \mathcal{X}$,

$$
k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

- Almost no conditions on \mathcal{X} (\mathcal{X} itself doesn't need an inner product, eg. documents).
■ A single kernel can correspond to several possible features. A trivial example for $\mathcal{X}:=\mathbb{R}$:

$$
\phi_{1}(x)=x \quad \text { and } \quad \phi_{2}(x)=\left[\begin{array}{l}
x / \sqrt{2} \\
x / \sqrt{2}
\end{array}\right]
$$

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)
Given $\alpha>0$ and k, k_{1} and k_{2} all kernels on \mathcal{X}, then αk and $k_{1}+k_{2}$ are kernels on \mathcal{X}.
(Proof via positive definiteness: later!) A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Example: $k\left(x, x^{\prime}\right)=x^{2}\left(x^{\prime}\right)^{2}$

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)
Given $\alpha>0$ and k, k_{1} and k_{2} all kernels on \mathcal{X}, then αk and $k_{1}+k_{2}$ are kernels on \mathcal{X}.
(Proof via positive definiteness: later!) A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)
Let \mathcal{X} and $\widetilde{\mathcal{X}}$ be sets, and define a map $A: \mathcal{X} \rightarrow \widetilde{\mathcal{X}}$. Define the kernel k on $\tilde{\mathcal{X}}$. Then the kernel $k\left(A(x), A\left(x^{\prime}\right)\right)$ is a kernel on \mathcal{X}.

Example: $k\left(x, x^{\prime}\right)=x^{2}\left(x^{\prime}\right)^{2}$.

New kernels from old: products

Theorem (Products of kernels are kernels)
Given k_{1} on \mathcal{X}_{1} and k_{2} on \mathcal{X}_{2}, then $k_{1} \times k_{2}$ is a kernel on $\mathcal{X}_{1} \times \mathcal{X}_{2}$. If $\mathcal{X}_{1}=\mathcal{X}_{2}=\mathcal{X}$, then $k:=k_{1} \times k_{2}$ is a kernel on \mathcal{X}.

Proof: Main idea only!
\mathcal{H}_{1} space of kernels between shapes,

$$
\phi_{1}(x)=\left[\begin{array}{c}
\mathbb{I}_{\square} \\
\mathbb{I}_{\Delta}
\end{array}\right] \quad \phi_{1}(\square)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad k_{1}(\square, \Delta)=0 .
$$

\mathcal{H}_{2} space of kernels between colors,

$$
\phi_{2}(x)=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right] \quad \phi_{2}(\bullet)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad k_{2}(\bullet, \bullet)=1 .
$$

New kernels from old: products

"Natural" feature space for colored shapes:

$$
\Phi(x)=\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\phi_{2}(x) \phi_{1}^{\top}(x)
$$

New kernels from old: products

"Natural" feature space for colored shapes:

$$
\Phi(x)=\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\phi_{2}(x) \phi_{1}^{\top}(x)
$$

Kernel is:
$k\left(x, x^{\prime}\right)=\sum_{i \in\{\bullet, \bullet\}} \sum_{j \in\{\square, \triangle\}} \Phi_{i j}(x) \Phi_{i j}\left(x^{\prime}\right)$

New kernels from old: products

"Natural" feature space for colored shapes:

$$
\Phi(x)=\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\phi_{2}(x) \phi_{1}^{\top}(x)
$$

Kernel is:
$k\left(x, x^{\prime}\right)=\sum_{i \in\{\bullet, \bullet\}} \sum_{j \in\{\square, \triangle\}} \Phi_{i j}(x) \Phi_{i j}\left(x^{\prime}\right)=\operatorname{tr}(\underbrace{\phi_{1}(x) \phi_{2}^{\top}(x) \phi_{2}\left(x^{\prime}\right) \phi_{1}^{\top}\left(x^{\prime}\right)}_{\Phi^{\top}(x)})$

New kernels from old: products

"Natural" feature space for colored shapes:

$$
\Phi(x)=\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\phi_{2}(x) \phi_{1}^{\top}(x)
$$

Kernel is:

$$
k\left(x, x^{\prime}\right)=\sum_{i \in\{\bullet, \bullet\}} \sum_{j \in\{\square, \Delta\}} \Phi_{i j}(x) \Phi_{i j}\left(x^{\prime}\right)=\operatorname{tr}(\phi_{1}(x) \underbrace{\phi_{2}^{\top}(x) \phi_{2}\left(x^{\prime}\right)}_{k_{2}\left(x, x^{\prime}\right)} \phi_{1}^{\top}\left(x^{\prime}\right))
$$

New kernels from old: products

"Natural" feature space for colored shapes:

$$
\Phi(x)=\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\phi_{2}(x) \phi_{1}^{\top}(x)
$$

Kernel is:

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =\sum_{i \in\{\bullet, \bullet\}} \sum_{j \in\{\square, \Delta\}} \Phi_{i j}(x) \Phi_{i j}\left(x^{\prime}\right)=\operatorname{tr}(\phi_{1}(x) \underbrace{\phi_{2}^{\top}(x) \phi_{2}\left(x^{\prime}\right)}_{k_{2}\left(x, x^{\prime}\right)} \phi_{1}^{\top}\left(x^{\prime}\right)) \\
& =\operatorname{tr}(\underbrace{\phi_{1}^{\top}\left(x^{\prime}\right) \phi_{1}(x)}_{k_{1}\left(x, x^{\prime}\right)}) k_{2}\left(x, x^{\prime}\right)
\end{aligned}
$$

New kernels from old: products

"Natural" feature space for colored shapes:

$$
\Phi(x)=\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle} \\
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{I}_{\bullet} \\
\mathbb{I}_{\bullet}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{I}_{\square} & \mathbb{I}_{\triangle}
\end{array}\right]=\phi_{2}(x) \phi_{1}^{\top}(x)
$$

Kernel is:

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =\sum_{i \in\{\bullet, \bullet\}} \sum_{j \in\{\square, \Delta\}} \Phi_{i j}(x) \Phi_{i j}\left(x^{\prime}\right)=\operatorname{tr}(\phi_{1}(x) \underbrace{\phi_{2}^{\top}(x) \phi_{2}\left(x^{\prime}\right)}_{k_{2}\left(x, x^{\prime}\right)} \phi_{1}^{\top}\left(x^{\prime}\right)) \\
& =\operatorname{tr}(\underbrace{\phi_{1}^{\top}\left(x^{\prime}\right) \phi_{1}(x)}_{k_{1}\left(x, x^{\prime}\right)}) k_{2}\left(x, x^{\prime}\right)=k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right)
\end{aligned}
$$

Sums and products \Longrightarrow polynomials

Theorem (Polynomial kernels)
Let $x, x^{\prime} \in \mathbb{R}^{d}$ for $d \geq 1$, and let $m \geq 1$ be an integer and $c \geq 0$ be a positive real. Then

$$
k\left(x, x^{\prime}\right):=\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{m}
$$

is a valid kernel.
To prove: expand into a sum (with non-negative scalars) of kernels $\left\langle x, x^{\prime}\right\rangle$ raised to integer powers. These individual terms are valid kernels by the product rule.

Infinite sequences

The kernels we've seen so far are dot products between finitely many features. E.g.

$$
k(x, y)=\left[\begin{array}{lll}
\sin (x) & x^{3} & \log x
\end{array}\right]^{\top}\left[\begin{array}{lll}
\sin (y) & y^{3} & \log y
\end{array}\right]
$$

where $\phi(x)=\left[\begin{array}{lll}\sin (x) & x^{3} & \log x\end{array}\right]$
Can a kernel be a dot product between infinitely many features?

Taylor series kernels

Definition (Taylor series kernel)
For $r \in(0, \infty]$, with $a_{n} \geq 0$ for all $n \geq 0$

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad|z|<r, z \in \mathbb{R}
$$

Define \mathcal{X} to be the \sqrt{r}-ball in \mathbb{R}^{d}, so $\|x\|<\sqrt{r}$,

$$
k\left(x, x^{\prime}\right)=f\left(\left\langle x, x^{\prime}\right\rangle\right)=\sum_{n=0}^{\infty} a_{n}\left\langle x, x^{\prime}\right\rangle^{n}
$$

Exponential kernel:

$$
k\left(x, x^{\prime}\right):=\exp \left(\left\langle x, x^{\prime}\right\rangle\right) .
$$

Taylor series kernel (proof)

Proof: Non-negative weighted sums of kernels are kernels, and products of kernels are kernels, so the following is a kernel if it converges:

$$
k\left(x, x^{\prime}\right)=\sum_{n=0}^{\infty} a_{n}\left(\left\langle x, x^{\prime}\right\rangle\right)^{n}
$$

By Cauchy-Schwarz,

$$
\left|\left\langle x, x^{\prime}\right\rangle\right| \leq\|x\|\left\|x^{\prime}\right\|<r
$$

so the sum converges.

Exponentiated quadratic kernel

Exponentiated quadratic kernel: This kernel on \mathbb{R}^{d} is defined as

$$
k\left(x, x^{\prime}\right):=\exp \left(-\gamma^{-2}\left\|x-x^{\prime}\right\|^{2}\right) .
$$

Proof: an exercise! Use product rule, mapping rule, exponential kernel.

Infinite sequences

Definition

The space ℓ_{2} (square summable sequences) comprises all sequences $a:=\left(a_{i}\right)_{i \geq 1}$ for which

$$
\|a\|_{\ell_{2}}^{2}=\sum_{\ell=1}^{\infty} a_{\ell}^{2}<\infty .
$$

Definition
Given sequence of functions $\left(\phi_{\ell}(x)\right)_{\ell>1}$ in ℓ_{2} where $\phi_{\ell}: \chi \rightarrow \mathbb{R}$ is the i th coordinate of $\phi(x)$. Then

Infinite sequences

Definition

The space ℓ_{2} (square summable sequences) comprises all sequences $a:=\left(a_{i}\right)_{i \geq 1}$ for which

$$
\|a\|_{\ell_{2}}^{2}=\sum_{\ell=1}^{\infty} a_{\ell}^{2}<\infty
$$

Definition

Given sequence of functions $\left(\phi_{\ell}(x)\right)_{\ell \geq 1}$ in ℓ_{2} where $\phi_{\ell}: \mathcal{X} \rightarrow \mathbb{R}$ is the i th coordinate of $\phi(x)$. Then

$$
\begin{equation*}
k\left(x, x^{\prime}\right):=\sum_{\ell=1}^{\infty} \phi_{\ell}(x) \phi_{\ell}\left(x^{\prime}\right) \tag{1}
\end{equation*}
$$

Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,

$$
\left|\sum_{\ell=1}^{\infty} \phi_{\ell}(x) \phi_{\ell}\left(x^{\prime}\right)\right| \leq\|\phi(x)\|_{\ell_{2}}\left\|\phi\left(x^{\prime}\right)\right\|_{\ell_{2}}
$$

so the sequence defining the inner product converges for all $x, x^{\prime} \in \mathcal{X}$

Positive definite functions

If we are given a function of two arguments, $k\left(x, x^{\prime}\right)$, how can we determine if it is a valid kernel?

1 Find a feature map?
1 Sometimes this is not obvious (eg if the feature vector is infinite dimensional, e.g. the exponentiated quadratic kernel in the last slide)
2 The feature map is not unique.
2 A direct property of the function: positive definiteness.

Positive definite functions

Definition (Positive definite functions)
A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive definite if
$\forall n \geq 1, \forall\left(a_{1}, \ldots a_{n}\right) \in \mathbb{R}^{n}, \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

The function $k(\cdot, \cdot)$ is strictly positive definite if for mutually distinct x_{i}, the equality holds only when all the a_{i} are zero.

Kernels are positive definite

Theorem
Let \mathcal{H} be a Hilbert space, \mathcal{X} a non-empty set and $\phi: \mathcal{X} \rightarrow \mathcal{H}$. Then $\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=: k(x, y)$ is positive definite.

Proof.

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}^{2} \geq 0
\end{aligned}
$$

Reverse also holds: positive definite $k\left(x, x^{\prime}\right)$ is inner product in a unique \mathcal{H} (Moore-Aronsajn: coming later!).

Sum of kernels is a kernel

Proof by positive definiteness:
Consider two kernels $k_{1}\left(x, x^{\prime}\right)$ and $k_{2}\left(x, x^{\prime}\right)$. Then

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j}\left[k_{1}\left(x_{i}, x_{j}\right)+k_{2}\left(x_{i}, x_{j}\right)\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k_{1}\left(x_{i}, x_{j}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k_{2}\left(x_{i}, x_{j}\right) \\
& \geq 0
\end{aligned}
$$

The reproducing kernel Hilbert space

First example: finite space, polynomial features

Reminder: XOR example:

Example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

$$
\begin{aligned}
& \phi: \mathbb{R}^{2} \rightarrow \\
& \mathbb{R}^{3} \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \mapsto
\end{aligned} \phi(x)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2}
\end{array}\right],
$$

with kernel

$$
k(x, y)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2}
\end{array}\right]^{\top}\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{1} y_{2}
\end{array}\right]
$$

(the standard inner product in \mathbb{R}^{3} between features). Denote this feature space by \mathcal{H}.

Example: finite space, polynomial features

Define a linear function of the inputs x_{1}, x_{2}, and their product $x_{1} x_{2}$,

$$
f(x)=f_{1} x_{1}+f_{2} x_{2}+f_{3}\left(x_{1} x_{2}\right) .
$$

f in a space of functions mapping from $\mathcal{X}=\mathbb{R}^{2}$ to \mathbb{R}. Equivalent representation for f,

$$
f(\cdot)=\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3}
\end{array}\right]^{\top} .
$$

$f(\cdot)$ or f refers to the function as an object (here as a vector in \mathbb{R}^{3}) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

Evaluation of f at x is an inner product in feature space (here standard inner product in \mathbb{R}^{3})

Example: finite space, polynomial features

Define a linear function of the inputs x_{1}, x_{2}, and their product $x_{1} x_{2}$,

$$
f(x)=f_{1} x_{1}+f_{2} x_{2}+f_{3}\left(x_{1} x_{2}\right)
$$

f in a space of functions mapping from $\mathcal{X}=\mathbb{R}^{2}$ to \mathbb{R}. Equivalent representation for f,

$$
f(\cdot)=\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3}
\end{array}\right]^{\top}
$$

$f(\cdot)$ or f refers to the function as an object (here as a vector in \mathbb{R}^{3}) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

$$
f(x)=f(\cdot)^{\top} \phi(x)=\langle f(\cdot), \phi(x)\rangle_{\mathcal{H}}
$$

Evaluation of f at x is an inner product in feature space (here standard inner product in \mathbb{R}^{3})
\mathcal{H} is a space of functions mapping \mathbb{R}^{2} to \mathbb{R}.

Functions of infinitely many features

Functions are linear combinations of features:

$$
f(x)=\langle f, \phi(x)\rangle_{\mathcal{H}}=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x)=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right]^{\top}\left[\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x)
\end{array}\right]
$$

$$
\begin{gathered}
k(x, y)=\sum_{\ell=1}^{\infty} \phi_{\ell}(x) \phi_{\ell}\left(x^{\prime}\right) \\
f(x)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \quad \sum_{\ell=1}^{\infty} f_{\ell}^{2}<\infty .
\end{gathered}
$$

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

$$
f(x)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x)
$$

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

$$
\begin{aligned}
f(x) & =\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \\
& =\sum_{\ell=1}^{\infty} \underbrace{\left(\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)\right)}_{f_{\ell}} \phi_{\ell}(x)
\end{aligned}
$$

$$
f_{\ell}:=\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)
$$

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

$$
\begin{aligned}
f(x) & =\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \\
& =\sum_{\ell=1}^{\infty} \underbrace{\left(\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)\right)}_{f_{\ell}} \phi_{\ell}(x) \\
& =\langle\underbrace{\sum_{i=1}^{m} \alpha_{i} \phi\left(x_{i}\right)}_{f}, \phi(x)\rangle_{\mathcal{H}}
\end{aligned}
$$

$$
f:=\sum_{i=1}^{m} \alpha_{i} \phi\left(x_{i}\right)
$$

Expressing the functions with kernels

Function with exponentiated quadratic kernel:

$$
\begin{aligned}
f(x) & =\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \\
& =\sum_{\ell=1}^{\infty} \underbrace{\left(\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)\right)}_{f_{\ell}} \phi_{\ell}(x) \\
& =\langle\underbrace{\sum_{i=1}^{m} \alpha_{i} \phi\left(x_{i}\right)}_{f}, \phi(x)\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)
\end{aligned}
$$

$$
f:=\sum_{i=1}^{m} \alpha_{i} \phi\left(x_{i}\right)
$$

Function of infinitely many features expressed using $\left\{\left(\alpha_{i}, x_{i}\right)\right\}_{i=1}^{m}$.

The feature map is also a function

On previous page,

$$
f(x):=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)=\langle f(\cdot), \phi(x)\rangle_{\mathcal{H}} \quad \text { where } \quad f_{\ell}=\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)
$$

What if $m=1$ and $\alpha_{1}=1$?
Then

The feature map is also a function

On previous page,

$$
f(x):=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)=\langle f(\cdot), \phi(x)\rangle_{\mathcal{H}} \quad \text { where } \quad f_{\ell}=\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)
$$

What if $m=1$ and $\alpha_{1}=1$?
Then

$$
f(x)=k\left(x_{1}, x\right)=\langle\underbrace{k\left(x_{1}, \cdot\right)}_{f(\cdot)}, \phi(x)\rangle_{\mathcal{H}}
$$

The feature map is also a function

On previous page,

$$
f(x):=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)=\langle f(\cdot), \phi(x)\rangle_{\mathcal{H}} \quad \text { where } \quad f_{\ell}=\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)
$$

What if $m=1$ and $\alpha_{1}=1$?
Then

$$
\begin{aligned}
f(x)=k\left(x_{1}, x\right) & =\langle\underbrace{k\left(x_{1}, \cdot\right)}_{f(\cdot)}, \phi(x)\rangle_{\mathcal{H}} \\
& =\left\langle k(x, \cdot), \phi\left(x_{1}\right)\right\rangle_{\mathcal{H}}
\end{aligned}
$$

....so the feature map is a (very simple) function! We can write without ambiguity

The feature map is also a function

On previous page,

$$
f(x):=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)=\langle f(\cdot), \phi(x)\rangle_{\mathcal{H}} \quad \text { where } \quad f_{\ell}=\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}\left(x_{i}\right)
$$

What if $m=1$ and $\alpha_{1}=1$?
Then

$$
\begin{aligned}
f(x)=k\left(x_{1}, x\right) & =\langle\underbrace{k\left(x_{1}, \cdot\right)}_{f(\cdot)}, \phi(x)\rangle_{\mathcal{H}} \\
& =\left\langle k(x, \cdot), \phi\left(x_{1}\right)\right\rangle_{\mathcal{H}}
\end{aligned}
$$

....so the feature map is a (very simple) function!
We can write without ambiguity

$$
k(x, y)=\langle k(\cdot, x), k(\cdot, y)\rangle_{\mathcal{H}}
$$

Features vs functions

A subtle point: \mathcal{H} can be larger than all $\phi(x)$.

E.g. $f(\cdot)=[11-1] \in \mathcal{H}$ cannot be obtained by $\phi(x)=\left[x_{1} x_{2}\left(x_{1} x_{2}\right)\right]$.

Features vs functions

A subtle point: \mathcal{H} can be larger than all $\phi(x)$.

E.g. $f(\cdot)=\left[\begin{array}{ll}1 & 1\end{array}\right] \in \mathcal{H}$ cannot be obtained by $\phi(x)=\left[x_{1} x_{2}\left(x_{1} x_{2}\right)\right]$.

The reproducing property

This example illustrates the two defining features of an RKHS:
■ The reproducing property: (kernel trick)
$\forall x \in \mathcal{X}, \forall f(\cdot) \in \mathcal{H},\langle f(\cdot), k(\cdot, x)\rangle_{\mathcal{H}}=f(x)$
...or use shorter notation $\langle f, \phi(x)\rangle_{\mathcal{H}}$.
■ The feature map of every point is a function: $k(\cdot, x)=\phi(x) \in \mathcal{H}$ for any $x \in \mathcal{X}$, and

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}=\left\langle k(\cdot, x), k\left(\cdot, x^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

Understanding smoothness in the RKHS

Infinite feature space via fourier series

Function on the interval $[-\pi, \pi]$ with periodic boundary.
Fourier series:

$$
f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)=\sum_{l=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x))
$$

using the orthonormal basis on $[-\pi, \pi]$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (2 \ell x) \overline{\exp (2 m x)} d x= \begin{cases}1 & \ell=m \\ 0 & \ell \neq m\end{cases}
$$

Example: "top hat" function,

$$
\begin{aligned}
f(x) & = \begin{cases}1 & |x|<T \\
0 & T \leq|x|<\pi\end{cases} \\
\hat{f}_{\ell}: & =\frac{\sin (\ell T)}{\ell \pi} \quad f(x)=\sum_{\ell=0}^{\infty} 2 \hat{f}_{\ell} \cos (\ell x)
\end{aligned}
$$

Infinite feature space via fourier series

Function on the interval $[-\pi, \pi]$ with periodic boundary. Fourier series:

$$
f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)=\sum_{l=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x))
$$

using the orthonormal basis on $[-\pi, \pi]$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (\imath \ell x) \overline{\exp (\imath m x)} d x= \begin{cases}1 & \ell=m \\ 0 & \ell \neq m\end{cases}
$$

Example: "top hat" function,

Infinite feature space via fourier series

Function on the interval $[-\pi, \pi]$ with periodic boundary. Fourier series:

$$
f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)=\sum_{l=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x))
$$

using the orthonormal basis on $[-\pi, \pi]$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (\imath \ell x) \overline{\exp (\imath m x)} d x= \begin{cases}1 & \ell=m \\ 0 & \ell \neq m\end{cases}
$$

Example: "top hat" function,

$$
\begin{aligned}
f(x) & = \begin{cases}1 & |x|<T \\
0 & T \leq|x|<\pi .\end{cases} \\
\hat{f}_{\ell} & :=\frac{\sin (\ell T)}{\ell \pi} \quad f(x)=\sum_{\ell=0}^{\infty} 2 \hat{f}_{\ell} \cos (\ell x) .
\end{aligned}
$$

Fourier series for top hat function

Fourier series coefficients

Fourier series for top hat function

Fourier series coefficients

Fourier series for top hat function

Fourier series coefficients

Fourier series for top hat function

Fourier series coefficients

Fourier series for top hat function

Fourier series coefficients

Fourier series for top hat function

Fourier series coefficients

Fourier series for top hat function

Fourier series coefficients

Fourier series for kernel function

Assume kernel translation invariant,

$$
k(x, y)=k(x-y)
$$

Fourier series representation of k

$$
\begin{aligned}
k(x-y) & =\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell(x-y)) \\
& =\sum_{\ell=-\infty}^{\infty}[\underbrace{\sqrt{\hat{k}_{\ell}} \exp (\imath \ell(x)}_{\phi_{\ell}(x)}][\underbrace{\sqrt{\hat{k}_{\ell}} \exp (-\imath \ell y)}_{\phi_{\ell}(y)}] .
\end{aligned}
$$

Example: Jacobi theta kernel:

ϑ is Jacobi theta function, close to Gaussian when σ^{2} much narrower than $[-\pi, \pi]$.

Fourier series for kernel function

Assume kernel translation invariant,

$$
k(x, y)=k(x-y)
$$

Fourier series representation of k

$$
\begin{aligned}
k(x-y) & =\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell(x-y)) \\
& =\sum_{\ell=-\infty}^{\infty}[\underbrace{\sqrt{\hat{k}_{\ell}} \exp (\imath \ell(x)}_{\phi_{\ell}(x)}][\underbrace{\sqrt{\hat{k}_{\ell}} \exp (-\imath \ell y)}_{\phi_{\ell}(y)}] .
\end{aligned}
$$

Example: Jacobi theta kernel:

$$
k(x-y)=\frac{1}{2 \pi} \vartheta\left(\frac{(x-y)}{2 \pi}, \frac{\imath \sigma^{2}}{2 \pi}\right), \quad \hat{k}_{\ell}=\frac{1}{2 \pi} \exp \left(\frac{-\sigma^{2} \ell^{2}}{2}\right) .
$$

ϑ is Jacobi theta function, close to Gaussian when σ^{2} much narrower than $[-\pi, \pi]$.

Fourier series for Gaussian-spectrum kernel

Fourier series coefficients

Fourier series for Gaussian-spectrum kernel

Fourier series for Gaussian-spectrum kernel

Fourier series for Gaussian-spectrum kernel

RKHS via fourier series

Recall standard dot product in L_{2} :

$$
\langle f, g\rangle_{L_{2}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

RKHS via fourier series

Recall standard dot product in L_{2} :

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \\
& =\frac{1}{2 \pi} \int_{\pi}^{\pi}\left[\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)\right]\left[\sum_{m=-\infty}^{\infty} \overline{\hat{g}_{m} \exp (\imath m x)}\right] d x
\end{aligned}
$$

RKHS via fourier series

Recall standard dot product in L_{2} :

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \\
& =\frac{1}{2 \pi} \int_{\pi}^{\pi}\left[\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)\right]\left[\sum_{m=-\infty}^{\infty} \overline{\hat{g}_{m} \exp (\imath m x)}\right] d x \\
& =\sum_{\ell=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{m} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (\imath \ell x) \exp (-\imath m x)
\end{aligned}
$$

RKHS via fourier series

Recall standard dot product in L_{2} :

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \\
& =\frac{1}{2 \pi} \int_{\pi}^{\pi}\left[\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)\right]\left[\sum_{m=-\infty}^{\infty} \overline{\hat{g}_{m} \exp (\imath m x)}\right] d x \\
& =\sum_{\ell=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{m} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (\imath \ell x) \exp (-\imath m x) \\
& =\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{\ell}
\end{aligned}
$$

RKHS via fourier series

Recall standard dot product in L_{2} :

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \\
& =\frac{1}{2 \pi} \int_{\pi}^{\pi}\left[\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp (\imath \ell x)\right]\left[\sum_{m=-\infty}^{\infty} \overline{\hat{g}_{m} \exp (\imath m x)}\right] d x \\
& =\sum_{\ell=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{m} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp (\imath \ell x) \exp (-\imath m x) \\
& =\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{\ell} .
\end{aligned}
$$

Define the dot product in \mathcal{H} to have a roughness penalty,

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{g}}_{\ell}}{\hat{k}_{\ell}} .
$$

Roughness penalty explained

The squared norm of a function f in \mathcal{H} enforces smoothness:

$$
\|f\|_{\mathcal{H}}^{2}=\langle f, f\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^{2}}{\hat{k}_{\ell}} .
$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $\|f\|_{\mathcal{H}}^{2}<\infty$. Recall $f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x))$.

Question: is the top hat function in the "Gaussian spectrum" RKHS?

Roughness penalty explained

The squared norm of a function f in \mathcal{H} enforces smoothness:

$$
\|f\|_{\mathcal{H}}^{2}=\langle f, f\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{l} \overline{\hat{f}_{l}}}{\hat{k}_{\ell}}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^{2}}{\hat{k}_{\ell}} .
$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $\|f\|_{\mathcal{H}}^{2}<\infty$.
Recall $f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x))$.

Question: is the top hat function in the "Gaussian spectrum" RKHS?

Roughness penalty explained

The squared norm of a function f in \mathcal{H} enforces smoothness:

$$
\|f\|_{\mathcal{H}}^{2}=\langle f, f\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{l} \overline{\hat{f}_{l}}}{\hat{k}_{l}}=\sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{l}\right|^{2}}{\hat{k}_{l}} .
$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $\|f\|_{\mathcal{H}}^{2}<\infty$.
Recall $f(x)=\sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell}(\cos (\ell x)+\imath \sin (\ell x))$.

Question: is the top hat function in the "Gaussian spectrum" RKHS?
Warning: need stronger conditions on kernel than L_{2} convergence: Mercer's theorem.

Feature map and reproducing property

Reproducing property: define a function

$$
g(x):=k(x-z)=\sum_{\ell=-\infty}^{\infty} \exp (\imath \ell x) \underbrace{\hat{k}_{\ell} \exp (-\imath \ell z)}_{\hat{g}_{\ell}}
$$

Then for a function $f(\cdot) \in \mathcal{H}$,

$$
\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\langle f(\cdot), g(\cdot)\rangle_{\mathcal{H}}
$$

Feature map and reproducing property

Reproducing property: define a function

$$
g(x):=k(x-z)=\sum_{\ell=-\infty}^{\infty} \exp (\imath \ell x) \underbrace{\hat{k}_{\ell} \exp (-\imath \ell z)}_{\hat{g}_{\ell}}
$$

Then for a function $f(\cdot) \in \mathcal{H}$,

$$
\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\langle f(\cdot), g(\cdot)\rangle_{\mathcal{H}}
$$

Feature map and reproducing property

Reproducing property: define a function

$$
g(x):=k(x-z)=\sum_{\ell=-\infty}^{\infty} \exp (\imath \ell x) \underbrace{\hat{k}_{\ell} \exp (-\imath \ell z)}_{\hat{g}_{\ell}}
$$

Then for a function $f(\cdot) \in \mathcal{H}$,

$$
\begin{aligned}
&\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\langle f(\cdot), g(\cdot)\rangle_{\mathcal{H}} \\
& \sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell}}{\overbrace{\hat{k}_{\ell} \exp (\imath \ell z)}^{\overline{q_{\ell}}}} \\
& \hat{k}_{\ell}
\end{aligned}
$$

Feature map and reproducing property

Reproducing property for the kernel:
Recall kernel definition:

$$
k(x-y)=\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell(x-y))=\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell x) \exp (-\imath \ell y)
$$

Define two functions

Feature map and reproducing property

Reproducing property for the kernel:
Recall kernel definition:

$$
k(x-y)=\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell(x-y))=\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell x) \exp (-\imath \ell y)
$$

Define two functions

$$
\begin{aligned}
f(x):=k(x-y) & =\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell(x-y)) \\
& =\sum_{\ell=-\infty}^{\infty} \exp (\imath \ell x) \underbrace{\hat{k}_{\ell} \exp (-\imath \ell y)}_{\hat{f}_{\ell}} \\
g(x):=k(x-z) & =\sum_{\ell=-\infty}^{\infty} \exp (\imath \ell x) \underbrace{\hat{k}_{\ell} \exp (-\imath \ell z)}_{\hat{g}_{\ell}}
\end{aligned}
$$

Feature map and reproducing property

Check the reproducing property:

$$
\begin{aligned}
\langle k(\cdot, y), k(\cdot, z)\rangle_{\mathcal{H}} & =\langle f(\cdot), g(\cdot)\rangle_{\mathcal{H}} \\
& =\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{g}}_{\ell}}{\hat{k}_{\ell}}
\end{aligned}
$$

Feature map and reproducing property

Check the reproducing property:

$$
\begin{aligned}
\langle k(\cdot, y), k(\cdot, z)\rangle_{\mathcal{H}} & =\langle f(\cdot), g(\cdot)\rangle_{\mathcal{H}} \\
& =\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{g}}_{\ell}}{\hat{k}_{\ell}} \\
& =\sum_{\ell=-\infty}^{\infty} \frac{\left(\hat{k}_{\ell} \exp (-\imath \ell y)\right)\left(\hat{k}_{\ell} \exp (-\imath \ell z)\right.}{\hat{k}_{\ell}} \\
& =\sum^{\infty} \hat{k}_{\ell} \exp (2 \ell(z-y))=k(z-y)
\end{aligned}
$$

Feature map and reproducing property

Check the reproducing property:

$$
\begin{aligned}
\langle k(\cdot, y), k(\cdot, z)\rangle_{\mathcal{H}} & =\langle f(\cdot), g(\cdot)\rangle_{\mathcal{H}} \\
& =\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{g}}_{\ell}}{\hat{k}_{\ell}} \\
& =\sum_{\ell=-\infty}^{\infty} \frac{\left(\hat{k}_{\ell} \exp (-\imath \ell y)\right)\left(\overline{\hat{k}_{\ell}} \exp (-\imath \ell z)\right.}{\hat{k}_{\ell}} \\
& =\sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp (\imath \ell(z-y))=k(z-y) .
\end{aligned}
$$

Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from $-\infty$ to ∞, complex conjugate)

$$
f(z)=\sum_{\ell=-\infty}^{\infty} f_{\ell} \overline{\phi_{\ell}(z)}=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}} .
$$

We've defined the RKHS dot product as

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{l} \hat{\hat{k}_{\ell}}}{\hat{k}_{\ell}} \quad\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell}\left(\overline{\hat{k}_{\ell} \exp (-\imath \ell z)}\right)}{\hat{k}_{\ell}}
$$

Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from $-\infty$ to ∞, complex conjugate)

$$
f(z)=\sum_{\ell=-\infty}^{\infty} f_{\ell} \overline{\phi_{\ell}(z)}=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}} .
$$

We've defined the RKHS dot product as

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{l} \overline{\hat{g}_{\ell}}}{\hat{k}_{\ell}} \quad\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell}\left(\overline{\hat{k}_{\ell}} \exp (-\imath \ell z)\right.}{\left(\sqrt{\hat{k}_{\ell}}\right)^{2}}
$$

Link back to original RKHS function definition

Original form of a function in the RKHS was
(detail: sum now from $-\infty$ to ∞, complex conjugate)

$$
f(z)=\sum_{\ell=-\infty}^{\infty} f_{\ell} \overline{\phi_{\ell}(z)}=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}}
$$

We've defined the RKHS dot product as

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty} \frac{\hat{f}_{l} \overline{\hat{g}}_{l}}{\hat{k}_{l}}
$$

$$
\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell}\left(\overline{\hat{k}_{\ell} \exp (-\imath \ell z)}\right)}{\left(\sqrt{\hat{k}_{\ell}}\right)^{2}}
$$

By inspection

$$
f_{\ell}=\hat{f}_{\ell} / \sqrt{\hat{k}_{\ell}} \quad \phi_{\ell}(z)=\sqrt{\hat{k}_{\ell}} \exp (-\imath \ell z)
$$

Infinite feature space on \mathbb{R}

Define a probability measure on $\mathcal{\chi}:=\mathbb{R}$. We'll use the Gaussian density,

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2}\right)
$$

Define the eigenexpansion of $k\left(x, x^{\prime}\right)$ wrt this measure:
$\lambda_{\ell} e_{\ell}(x)=\int k\left(x, x^{\prime}\right) e_{\ell}\left(x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime} \quad \int e_{i}(x) e_{j}(x) p(x) d x= \begin{cases}1 & i=j \\ 0 & i \neq j .\end{cases}$

We can write

$$
k\left(x, x^{\prime}\right)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}\left(x^{\prime}\right),
$$

which converges in $L_{2}(p)$ for a square integrable kernel.
Warning: again, need stronger conditions on kernel than L_{2} convergence.

Infinite feature space on \mathbb{R}

Define a probability measure on $\mathcal{X}:=\mathbb{R}$. We'll use the Gaussian density,

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2}\right)
$$

Define the eigenexpansion of $k\left(x, x^{\prime}\right)$ wrt this measure:

$$
\lambda_{\ell} e_{\ell}(x)=\int k\left(x, x^{\prime}\right) e_{\ell}\left(x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime} \quad \int e_{i}(x) e_{j}(x) p(x) d x= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

which converges in $L_{2}(p)$ for a square integrable kernel. Warning: again, need stronger conditions on kernel than L_{2} convergence.

Infinite feature space on \mathbb{R}

Define a probability measure on $\mathcal{X}:=\mathbb{R}$. We'll use the Gaussian density,

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2}\right)
$$

Define the eigenexpansion of $k\left(x, x^{\prime}\right)$ wrt this measure:

$$
\lambda_{\ell} e_{\ell}(x)=\int k\left(x, x^{\prime}\right) e_{\ell}\left(x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime} \quad \int e_{i}(x) e_{j}(x) p(x) d x= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

We can write

$$
k\left(x, x^{\prime}\right)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}\left(x^{\prime}\right)
$$

which converges in $L_{2}(p)$ for a square integrable kernel.
Warning: again, need stronger conditions on kernel than L_{2} convergence.

Infinite feature space on \mathbb{R}

Exponentiated quadratic kernel,

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)=\sum_{\ell=1}^{\infty} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}(x)\right)}_{\phi_{\ell}(x)} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}\left(x^{\prime}\right)\right)}_{\phi_{\ell}\left(x^{\prime}\right)} \\
\lambda_{\ell} e_{\ell}(x) & =\int k\left(x, x^{\prime}\right) e_{\ell}\left(x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime}, \\
p(x) & =\mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

Infinite feature space on \mathbb{R}

Exponentiated quadratic kernel,

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)=\sum_{\ell=1}^{\infty} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}(x)\right)}_{\phi_{\ell}(x)} \underbrace{\left(\sqrt{\lambda_{\ell}} e_{\ell}\left(x^{\prime}\right)\right)}_{\phi_{\ell}\left(x^{\prime}\right)} \\
\lambda_{\ell} e_{\ell}(x) & =\int k\left(x, x^{\prime}\right) e_{\ell}\left(x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime}, \\
p(x) & =\mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

$$
\lambda_{\ell} \propto b^{l} \quad b<1
$$

$e_{\ell}(x) \propto \exp \left(-(c-a) x^{2}\right) H_{\ell}(x \sqrt{2 c})$,
a, b, c are functions of σ, and H_{ℓ} is ℓ th order Hermite polynomial.

Infinite feature space on \mathbb{R}

Reminder: for two functions f, g in $L_{2}(p)$,

$$
f(x)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x) \quad g(x)=\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)
$$

dot product is

$$
\langle f, g\rangle_{L_{2}(p)}=\int_{-\infty}^{\infty} f(x) g(x) p(x) d x
$$

Define the dot product in \mathcal{H} to have a roughness penalty,

Infinite feature space on \mathbb{R}

Reminder: for two functions f, g in $L_{2}(p)$,

$$
f(x)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x) \quad g(x)=\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)
$$

dot product is

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}(p)} & =\int_{-\infty}^{\infty} f(x) g(x) p(x) d x \\
& =\int_{-\infty}^{\infty}\left(\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x)\right)\left(\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)\right) p(x) d x
\end{aligned}
$$

Define the dot product in \mathcal{H} to have a roughness penalty,

Infinite feature space on \mathbb{R}

Reminder: for two functions f, g in $L_{2}(p)$,

$$
f(x)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x) \quad g(x)=\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)
$$

dot product is

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}(p)} & =\int_{-\infty}^{\infty} f(x) g(x) p(x) d x \\
& =\int_{-\infty}^{\infty}\left(\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x)\right)\left(\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)\right) p(x) d x \\
& =\sum_{\ell=1}^{\infty} \hat{f}_{\ell} \hat{g}_{\ell}
\end{aligned}
$$

Define the dot product in \mathcal{H} to have a roughness penalty,

Infinite feature space on \mathbb{R}

Reminder: for two functions f, g in $L_{2}(p)$,

$$
f(x)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x) \quad g(x)=\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)
$$

dot product is

$$
\begin{aligned}
\langle f, g\rangle_{L_{2}(p)} & =\int_{-\infty}^{\infty} f(x) g(x) p(x) d x \\
& =\int_{-\infty}^{\infty}\left(\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(x)\right)\left(\sum_{m=1}^{\infty} \hat{g}_{m} e_{m}(x)\right) p(x) d x \\
& =\sum_{\ell=1}^{\infty} \hat{f} \hat{f}_{\ell} \hat{g}_{\ell}
\end{aligned}
$$

Define the dot product in \mathcal{H} to have a roughness penalty,

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}} \quad\|f\|_{\mathcal{H}}^{2}=\sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell}^{2}}{\lambda_{\ell}} .
$$

Does the reproducing property hold?

Check the reproducing property:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{l} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

Does the reproducing property hold?

Check the reproducing property:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{l} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

$$
g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Does the reproducing property hold?

Check the reproducing property:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

$$
g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Then:

$$
\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell} \overbrace{\left(\lambda_{\ell} e_{\ell}(z)\right)}^{\hat{g}_{\ell}}}{\lambda_{\ell}}
$$

Does the reproducing property hold?

Check the reproducing property:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

$$
g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Then:

$$
\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=1}^{\infty} \frac{\hat{f}_{l} \chi_{\ell} e_{\ell}(z)}{\not X_{\ell}}
$$

Does the reproducing property hold?

Check the reproducing property:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{l} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

$$
g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Then:

$$
\begin{aligned}
\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}} & =\sum_{\ell=1}^{\infty} \frac{\hat{f}_{l} X_{\ell} e_{\ell}(z)}{\not X_{\ell}} \\
& =\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(z)=f(z)
\end{aligned}
$$

Link back to the original RKHS definition

Original form of a function in the RKHS was

$$
f(z)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z)=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}}
$$

Expansion of $f(\cdot)$ in terms of kernel eigenbasis:

$$
f(\cdot)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(\cdot) \quad k(x, z)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(z)
$$

Link back to the original RKHS definition

Original form of a function in the RKHS was

$$
f(z)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z)=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}}
$$

Expansion of $f(\cdot)$ in terms of kernel eigenbasis:

$$
f(\cdot)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(\cdot) \quad k(x, z)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(z)
$$

Same expression with "roughness penalised" dot product:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}} \quad g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Link back to the original RKHS definition

Original form of a function in the RKHS was

$$
f(z)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z)=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}}
$$

Expansion of $f(\cdot)$ in terms of kernel eigenbasis:

$$
f(\cdot)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(\cdot) \quad k(x, z)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(z)
$$

Same expression with "roughness penalised" dot product:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

$$
g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Thus: $\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell}(\overbrace{\left.\lambda_{\ell} e_{\ell}(z)\right)}^{\lambda_{\ell}}}{\hat{\hat{q}_{\ell}}}$

Link back to the original RKHS definition

Original form of a function in the RKHS was

$$
f(z)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z)=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}}
$$

Expansion of $f(\cdot)$ in terms of kernel eigenbasis:

$$
f(\cdot)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(\cdot) \quad k(x, z)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(z)
$$

Same expression with "roughness penalised" dot product:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}} \quad g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Thus: $\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty} \frac{{\hat{f_{\ell}}}_{\ell}\left(\lambda_{\ell} e_{\ell}(z)\right)}{\left(\sqrt{\lambda_{\ell}}\right)^{2}}$

Link back to the original RKHS definition

Original form of a function in the RKHS was

$$
f(z)=\sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z)=\langle f(\cdot), \phi(z)\rangle_{\mathcal{H}}
$$

Expansion of $f(\cdot)$ in terms of kernel eigenbasis:

$$
f(\cdot)=\sum_{\ell=1}^{\infty} \hat{f}_{\ell} e_{\ell}(\cdot) \quad k(x, z)=\sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(x) e_{\ell}(z)
$$

Same expression with "roughness penalised" dot product:

$$
\langle f, g\rangle_{\mathcal{H}}=\sum_{l=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}}
$$

$$
g(\cdot)=k(\cdot, z)=\sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} e_{\ell}(z)}_{\hat{g}_{\ell}} e_{\ell}(\cdot)
$$

Thus: $\langle f(\cdot), k(\cdot, z)\rangle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty} \frac{{\hat{f_{\ell}}}_{\ell}\left(\lambda_{\ell} e_{\ell}(z)\right)}{\left(\sqrt{\lambda_{\ell}}\right)^{2}}$
By inspection: $\quad f_{\ell}=\hat{f}_{\ell} / \sqrt{\lambda_{\ell}}$

$$
\phi_{\ell}(z)=\sqrt{\lambda_{\ell}} e_{\ell}(z)
$$

RKHS function, exponentiated quadratic kernel:

where $f_{\ell}=\sum_{i=1}^{m} \alpha_{i} \sqrt{\lambda_{\ell}} e_{\ell}\left(x_{i}\right)$.

NOTE that this enforces smoothing:
λ_{ℓ} decay as e_{ℓ} become rougher,
f_{l} decay since
$\|f\|_{\mathcal{H}}^{2}=\sum_{\ell} f_{\ell}^{2}<\infty$.

Main message

Small RKHS norm results in smooth functions.
E.g. kernel ridge regression with exponentiated quadratic kernel:

$$
f^{*}=\arg \min _{f \in \mathcal{H}}\left(\sum_{i=1}^{n}\left(y_{i}-\left\langle f, \phi\left(x_{i}\right)\right\rangle_{\mathcal{H}}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}\right) .
$$

Some reproducing kernel Hilbert space theory

Reproducing kernel Hilbert space (1)

Definition

\mathcal{H} a Hilbert space of \mathbb{R}-valued functions on non-empty set \mathcal{X}. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a reproducing kernel of \mathcal{H}, and \mathcal{H} is a reproducing kernel Hilbert space, if
$\square \forall x \in \mathcal{X}, \quad k(\cdot, x) \in \mathcal{H}$,
$\square \forall x \in \mathcal{X}, \forall f \in \mathcal{H},\langle f(\cdot), k(\cdot, x)\rangle_{\mathcal{H}}=f(x)$ (the reproducing property).
In particular, for any $x, y \in \mathcal{X}$,

$$
\begin{equation*}
k(x, y)=\langle k(\cdot, x), k(\cdot, y)\rangle_{\mathcal{H}} . \tag{2}
\end{equation*}
$$

Original definition: kernel an inner product between feature maps. Then $\phi(x)=k(\cdot, x)$ a valid feature map.

Reproducing kernel Hilbert space (2)

Another RKHS definition:
Define δ_{x} to be the operator of evaluation at x, i.e.

$$
\delta_{x} f=f(x) \quad \forall f \in \mathcal{H}, x \in \mathcal{X}
$$

Definition (Reproducing kernel Hilbert space) \mathcal{H} is an RKHS if the evaluation operator δ_{x} is bounded: $\forall x \in \mathcal{X}$ there exists $\lambda_{x} \geq 0$ such that for all $f \in \mathcal{H}$,

$$
|f(x)|=\left|\delta_{x} f\right| \leq \lambda_{x}\|f\|_{\mathcal{H}}
$$

\Longrightarrow two functions identical in RHKS norm agree at every point:

$$
|f(x)-g(x)|=\left|\delta_{x}(f-g)\right| \leq \lambda_{x}\|f-g\|_{\mathcal{H}} \quad \forall f, g \in \mathcal{H} .
$$

RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded δ_{x}) \mathcal{H} is a reproducing kernel Hilbert space (i.e., its evaluation operators δ_{x} are bounded linear operators), if and only if \mathcal{H} has a reproducing kernel.

Proof: If \mathcal{H} has a reproducing kernel $\Longrightarrow \delta_{x}$ bounded

$$
\begin{aligned}
\left|\delta_{x}[f]\right| & =|f(x)| \\
& =\left|\langle f, k(\cdot, x)\rangle_{\mathcal{H}}\right| \\
& \leq\|k(\cdot, x)\|_{\mathcal{H}}\|f\|_{\mathcal{H}} \\
& =\langle k(\cdot, x), k(\cdot, x)\rangle_{\mathcal{H}}^{1 / 2}\|f\|_{\mathcal{H}} \\
& =k(x, x)^{1 / 2}\|f\|_{\mathcal{H}}
\end{aligned}
$$

Cauchy-Schwarz in 3rd line. Consequently, $\delta_{x}: \mathcal{F} \rightarrow \mathbb{R}$ bounded with $\lambda_{x}=k(x, x)^{1 / 2}$.

RKHS definitions equivalent

Proof: δ_{x} bounded $\Longrightarrow \mathcal{H}$ has a reproducing kernel
We use...
Theorem
(Riesz representation) In a Hilbert space \mathcal{H}, all bounded linear functionals are of the form $\langle\cdot, g\rangle_{\mathcal{H}}$, for some $g \in \mathcal{H}$.

If $\delta_{x}: \mathcal{F} \rightarrow \mathbb{R}$ is a bounded linear functional, by Riesz $\exists f_{\delta_{x}} \in \mathcal{H}$ such that

$$
\delta_{x} f=\left\langle f, f_{\delta_{x}}\right\rangle_{\mathcal{H}}, \forall f \in \mathcal{H}
$$

Define $k(\cdot, x)=f_{\delta_{x}}(\cdot), \forall x, x^{\prime} \in \mathcal{X}$. By its definition, both $k(\cdot, x)=f_{\delta_{x}}(\cdot) \in \mathcal{H}$ and $\langle f(\cdot), k(\cdot, x)\rangle_{\mathcal{H}}=\delta_{x} f=f(x)$. Thus, k is the reproducing kernel.

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)
Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be positive definite. There is a unique RKHS $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

Recall feature map is not unique (as we saw earlier): only kernel is unique.

Main message

Hilbert function spaces with bounded point evaluation

Research support

Work supported by:

The Gatsby Charitable Foundation

Deepmind
(9) DeepMind

Questions?

