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MMD and MMD flow

m Introduction to MMD as an integral probability metric
m Connection with neural net training

m Wasserstein-2 Gradient Flow on the MMD, consistency
m Noise injection for improved convergence

KALE and KALE flow

m Introduction to KALE as a variational lower bound on the KL
divergence

m Wasserstein-2 gradient flow on KALE

m Properties in relation to MMD

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow
(NeurIPS 2019)

Glaser, Arbel, G., KALE Flow: A Relaxed KL Gradient Flow for
Probabilities with Disjoint Support (NeurIPS 2021)
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Motivation

Main motivation: gradient flow when the target distribution
represented by samples

Gradient flow on MMD

m MMD (and related IPMs) are GAN critics
m Understand dynamics of GAN training
m Neural network training dynamics

Gradient flow on KALE

m The KALE (and other lower bounds on ¢-divergences) are GAN
critics

m Understand dynamics of GAN training
Source and target might have disjoint support: KL undefined!

Binkowski, Sutherland, Arbel, G., Demystifying MMD GANs (ICLR 2018)

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)

Arbel, Zhou, G. Generalized Energy-Based Models, (ICLR 2021)

Nowozin, Cseke, Tomioka, NeurIPS (2016) 3/33



The MMD, and MMD flow



The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := e [Epf(X) - Eof(Y)]
(F = unit ball in RKHS F)

Witness f for Gauss and Laplace densities

s

Gauss ]

m— |_aplace

Prob. density and f

Xor
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The MMD and witness in closed form

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—-Eqof(Y)]
lIFll7<1

= sup (f,up —LQ)r
[GESS!

= llup = poll
f(z) o pp(z) = po(z) = Epk(X, z) - Eok(Y, )

MMD(P, Q; F) = Epk(z,z') + Eqk(y, v') — 2Ep,0k(z, )
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MMD Flow

2 A
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Motivation: Neural Net training

. 1 &
= W P (E ; 5Zi>

Optimization using gradient de-
scent:

1 n
. 1 N 5 Zit—"_l = Zzt_fyvztc <526Z1i>
min [y =~ ¥ ¢z =1

Z, 2y o

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training

. 1 &
min L| — Z 0z, —
Z,nin€2 \ M i n—00

(x,y) ~ data

. 1 & . 2
min Ellly =~ 3 ;02 e i E g [y = E [, 0111
ZponZy e N = oo UsH

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018) 9/33



Motivation: Neural Net training

From previous slide:

min L(v) := E(a) [y = Eznu[z(2)]|]

Want to prove global convergence of GD when n — oo and

dz(z) = wge(z), Z =(w,6)

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training
From previous slide:

min £(v) := Ez)[lly — Eznw[¢2(2)]II]

Want to prove global convergence of GD when n — oo and

dz(z) = wge(z), Z =(w,6)
Connection to the MMD:

m Assume well-specified setting, y = Ey~u+[¢v(z)]
m Random feature formulation,

L) = By [|Evesu(2)] - Ezou[pz(2)]|’] = MMD* (v, )

m The kernel is: k(U, Z) = E;[¢pv(z) ¢z(z)].

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Intuition: MMD as “force field” on v

Assume henceforth

v, v* € Py(RY) := {,u, c P(RY) : /||m||2d,u,(z) < oo}.

MMD as free energy: target v*, current distribution v

1 1 1
F(v) = 5MMDZ(V*, v) == Ek(z, z') + 5 Evk(y, y) — By k(z,v)

interaction constant confinement

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Intuition: MMD as “force field” on v

Assume henceforth
v, v* € Py(RY) := {,u, c P(RY) : /||:n||2d,u,(m) < oo}.
MMD as free energy: target v*, current distribution v

1 1 1
F(v) = EMMD2(1/*, v) == Ek(z, z') + 5 Evk(y, y) — By k(z,v)

interaction constant confinement

Consider {y;}7 , My and {z:}7 4 ey,

Force on a particle z:

- Z V.k(z,z) + Z V.k(z,y;) = _vzfu*,vt(z)
J J

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pg(Rd), Wg) is h € L?(u) where h : R? — R4,
Define Vyy, F(u) of F at w using Taylor expansion

F((Id + eh)yu) = F(p) + € (Vw7 (), h), + o(€) (1)

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pg(Rd), Wg) is h € L?(u) where h : R? — R4,
Define Vyy, F(u) of F at w using Taylor expansion

F((Id + eh)yu) = F(p) + € (Vw7 (), h), + o(€) (1)

Under reasonable assumptions [A. Theorem 10.4.13]
Vi, F () = V7 ().

where in direction £:

Flu+e)) = Fp)+e [ FW@)de(@) +ole)  uet € Po(RY) (2)

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pg(Rd), Wg) is h € L?(u) where h : R? — R4,
Define Vyy, F(u) of F at w using Taylor expansion

F((Id + eh)yu) = F(p) + € (Vw7 (), h), + o(€) (1)

Under reasonable assumptions [A. Theorem 10.4.13]
Vi, F(p) = V7 ().
where in direction £:
Flu+e)) = F(u)+e [ F(W@)dgla) +ole)  ptet € Po(RY) (2)
The gradient flow is:
vy = div(v: Vo, F (1))

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
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Wasserstein gradient flow on MMD
First variation of 2 MMD?(v*,v) =: F(v)
F'W)(2) = forw(z) = 2(Bun [k(U, 2)] — Evnn[R(U, 2)])
The W5 gradient flow of the MMD:
Oy = div(ve Vw, F(v¢)) = div(ve Vs )

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on MMD

First variation of 2 MMD?(v*,v) =: F(v)
F'(w)(2) = forw(z) = 2(Bum [k(U, 2)] — Ev~u[R(U, 2)])
The W5 gradient flow of the MMD:
Orvy = div(ve Vi, F(v)) = div(vt Ve u,)
McKean-Vlasov dynamics for particles (existence and uniqueness
under Assumption A):

dZi = — Vg, fuu,(Zy)dt, Zg ~ Vg

Assumption A: k(z,z) < K, for all z € RY, Ele 18:k(z, )|I? < Kiq
and Z;’i,jzl 18:8;k(z,-)||?> < Kaq, d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

Vny1 = (I - 7vf1/*,1/t)#7/n
Zn+1 = Zp — 'Yvanu*,un(Zn)y Zoy ~ Vo, Jn ~ Vn

Under Assumption A, v, approaches v; as ¥ — 0

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

Vny1 = (I - 7vf1/*,1/t)#7/n
Zn+1 = Zp — 'Yvanu*,un(Zn)y Zoy ~ Vo, Jn ~ Vn

Under Assumption A, v, approaches v; as ¥ — 0

Consistency? Does v; converge to v* as t — 00?
y g

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency (1)

Can we use geodesic (displacement) convexity?
m A geodesic p; between v; and v5 is given by the transport map
T2 : R — R%:
p: = ((1 = t)Id + tT}2)
m A functional F is displacement convex if:

Flpt) < (1= t)F(v1) + tF(12)

#r1

Source and Target distribution Source and Target distribution
MMD iS not disp]_ace— Wasserstein interpolation (e (0,11 Mixture interpolation (Be)e 0,11
ment convex in general I “
(it is always mixture
Figure from Korba, Salim, ICML 2022 Tutorial, “Sampling as
1 First-Order Optimization over a space of probability measures”
convex- ).

1 F(tvr + (1 — tywa) < tF(1) + (1 — )F(r2)  Vte[0,1]).
15/33



Consistency (2)

Dissipation inequalities:
m Rate by which F decreases along the gradient flow [A, Proposition 2]
d}—(Vt)

= BV o]

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency (2)

Dissipation inequalities:
m Rate by which F decreases along the gradient flow [A, Proposition 2]
d}—(Vt)

=55 = “Bull Vvl

m Assume the dissipation rate is controlled (path-dependent
Lojasiewicz inequality)

F(ve) < CEL[IV o ll?)

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency (2)

Dissipation inequalities:
m Rate by which F decreases along the gradient flow [A, Proposition 2]

d}—(Vt)
=55 = “Bull Vvl

m Assume the dissipation rate is controlled (path-dependent
Lojasiewicz inequality)

F(ve) < CEL[IV o ll?)

m From above, [A, Proposition 7]:
1

<
F) < Fvo)t+2C-1t

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency (2)

Check: Lojasiewicz inequality for MMD?
m Does there exist C' > 0 such that

F(ve) < CEL[IVFor )

m By Cauchy-Schwarz in the RKHS|[A, eq. 16]

1
F(vi) = EMMDz(Vt,V*) < S V) En[IVF o]

where S(v*|v;) is the Negative Sobolev Distance?

m Require S(v*|v¢) < C for entire sequence v;: hard to check in theory,
fails in practice.

A] Arbel, Korba, Salim, G. (NeurIPS 2019)
1S(V*|Vt) = SUPy.Ez..,,[IIVe(2)]2]1<1 Bz~ [9(2)] — Evnws [g(U)]|

17/33



MMD flow in practice

® Data
@® Particles

¥
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice

®
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Emmpirical observations

Some observations:

m Almost all particles tend to collapse at the center of mass m of the
target v*, ie.: (vt >~ dp)
However, the loss stops decreasing: Vf,+ ,,(2) ~ 0 for z on the
support of v; (and is small when far from v*)...
...and in general, Vf,. ,,(z) # 0 outside the support of v;.

Can these observations be used to improve convergence?

19/33



Noise injection to improve convergence

Noise injection: Evaluate Vf,«,, outside of the support of v; to get a
better signal!

m Sample u; ~ N(0,1) and /; is the noise level:

Zpi1 = Zy — YV or 0, (Ze + Brug); Zy ~ vy

m Similar to continuation methods,? but extended to interacting
particles.

m Different from entropic regularization:

Ziv1 =2t — YV, (Zt) + Prw

2Chaudhari, Oberman, Osher, Soatto, Carlier. Deep relaxation: partial differential equations for
optimizing deep neural networks. Research in the Mathematical Sciences (2017)
Hazan, Levy, Shalev-Shwartz. On graduated optimization for stochastic non-convex problems. ICML

(2016).
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Noise injection: consistency
Recall: Ziv1 =2t — Yo p(Ze + Pru); Ty ~ Vg
Tradeoff for

m Large f:: v111 — vy not a descent direction any more:
F(vii1) > F(ve)
m Small f;: Back to the failure mode: Vf,«,,(Z: + fius) ~ 0

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Noise injection: consistency
Recall: Ziv1 =2t — Yo p(Ze + Pru); Ty ~ Vg
Tradeoff for

m Large f:: v¢11 — vy not a descent direction any more:
F(vir1) > F(vi)

m Small f;: Back to the failure mode: Vf,«,,(Z: + fius) ~ 0
Need f; such that:

Fie1) = F1i) < —ChE ximw, [[IVForpn(Xe + Brwe) ]
ut~N(0,1)
t
Y B = o0
; t—o0

Then [A, Proposition 8]

F(ve) < Fluo)e 07

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 21/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

¥

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice

® Data
@® Particles

22/33



Noise injected MMD flow in practice
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Noise injection: neural net setting

j 1 &
Y JINET T
i Eaall g X0 = 5 2 401
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Noise injection: neural net setting

1 N
min MMD*(v*,— Y &,
ZyoerZy ( N; 7)

KZ,Z)) = E jaial /()7 (x)]
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Noise injection: neural net setting

Training error per second

10°
— SGD .
10-1 —— SGD + noise injection
—— SGD + diffusion
— KSD
< 1072
Q
§ 1073
1074
10-°
1 10t 10?2 103 104 10°

Time (s)

KSD is Kernel Sobolev Discrepancy. Y. Mroueh, T. Sercu, and A. Raj. “Sobolev Descent.”
In: AISTATS. 2019.
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The KALE, and KALE flow

g2
\ AN



Reminder: the KALE divergence

KALE(P,Q;H)=sup Epf(X) — Egexp(f(Y))+1

o feH

|lw||3, penalized

Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with

Disjoint Support,” (NeurIPS 2021, Section 2) 26/33



Reminder: the KALE divergence

KALE(P,Q;H)=sup Epf(X) — Egexp(f(Y))+1

o feH

|lw||3, penalized

KALE(Q, P;#)=0.18

oo omne S0

Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with

. . 26/33
Disjoint Support,” (NeurIPS 2021, Section 2)



Reminder: the KALE divergence

KALE(P,Q;H)=sup Epf(X) — Egexp(f(Y))+1

o feH

|lw||3, penalized

KALE(Q, P;#)=0.12

00 0EIs) 4 00 ¢
Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with
Disjoint Support,” (NeurIPS 2021, Section 2)
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KALE vs KL vs MMD
A scaled KALE (non-degenerate for A =0 or A — 0):

KALE(P, @) = (1+ ) sup [Epf(X) ~ Boexp(f(Y))

A
1- 2nr2
+1- 318
MMD limit:
1
lim KALE)(P, Q;#) = ~MMD?(P, Q).
A—+oc0 2
KL limit (assuming log é% € H):
lim KALE,(P, Q; %) = KL(P, Q).
A—=0

Glaser, Arbel, G. (NeurIPS 2021, Proposition 1)
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Wasserstein gradient flow on KALE

First variation of the KALE, (v, v*)

OKALE;

—, W)= 1+A) o (2)
where f, ,+ is the solution of

fz/,u* - argl]péa;;_}f{,c(f: V)};

where

K(F,v) = Bf(X) - B exp(F(¥)) + 1 JfI
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Wasserstein gradient flow on KALE
First variation of the KALE, (v, v*)

OKALE,
—, W)= 1+A) o (2)
where f, ,+ is the solution of

fz/,u* - argl]péa;;_}f{,c(f: V)};

where
A
K(f,v) = Buf(X) = B exp (f(Y)) + 1= ZIfII5
Proof (idea):

OKALE oK * oK OFf, *
A:(1+>\) (fV,V:V)_|_ (f,v) oy
81/ 61/ af f:fu ok 81/
=0
as long as o 5;/”* exists (via implicit function theorem) 28/33



Wasserstein gradient flow on KALE

The W5 gradient flow of the KALE:
Oy = —(1 + )\)diV(Vtnyt7V*), vy = Py

where
Fuur = argmaxK(f,)

Glaser, Arbel, G. (NeurIPS 2021, Lemma 3)
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Consistency (2)

Again, under the (strong!) assumption

S(v*|ve) == sup |Ezn:[9(Z)] — Eunns[g(U)]|
9Bz, [[IV9(2)]2]<1
<C
we have )
KALE(v:)

<
— KALE(yy) 1+ C~1t
Once again, noise injection can be used (similar result to MMD flow).

Glaser, Arbel, G. (NeurIPS 2021, Proposition 3)

30/33



Consistency (2)

Again, under the (strong!) assumption

S(v*|ve) == sup |Ezn:[9(Z)] — Eunns[g(U)]|
9Bz, [[IV9(2)]2]<1
<C
we have )
KALE(v:)

<
— KALE(yy) 1+ C~1t
Once again, noise injection can be used (similar result to MMD flow).

Compare with linear rate for Wasserstein-2 flow on KL when v*
satisfies log-Sobolev inequality with constant p:

d
5 KL, v*) < —2pKL(vy,v")

Glaser, Arbel, G. (NeurIPS 2021, Proposition 3)
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KALE flow vs MMD flow in practice

«:Q0O0 OO0 OOO OOO

Figure 1: MMD and KALE flow trajectories for “three rings” target

Glaser, Arbel, G. (NeurIPS 2021)
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m Gradient flows based on kernel dependence measures
°* MMD flow is simpler, KALE flow is mode-seeking

® Noise injection can improve convergence
m NeurIPS 2019, NeurIPS 2021
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m Gradient flows based on kernel dependence measures:
°* MMD flow is simpler, KALE flow is mode-seeking
® Noise injection can improve convergence

m NeurIPS 2019, NeurIPS 2021
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Questions?
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