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Outline
MMD and MMD flow

Introduction to MMD as an integral probability metric
Connection with neural net training
Wasserstein-2 Gradient Flow on the MMD, consistency
Noise injection for improved convergence

KALE and KALE flow

Introduction to KALE as a variational lower bound on the KL
divergence
Wasserstein-2 gradient flow on KALE
Properties in relation to MMD

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow
(NeurIPS 2019)

Glaser, Arbel, G., KALE Flow: A Relaxed KL Gradient Flow for
Probabilities with Disjoint Support (NeurIPS 2021)
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Motivation
Main motivation: gradient flow when the target distribution
represented by samples
Gradient flow on MMD

MMD (and related IPMs) are GAN critics
Understand dynamics of GAN training
Neural network training dynamics

Gradient flow on KALE

The KALE (and other lower bounds on �-divergences) are GAN
critics
Understand dynamics of GAN training

Source and target might have disjoint support: KL undefined!
Binkowski, Sutherland, Arbel, G., Demystifying MMD GANs (ICLR 2018)̄
Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
Arbel, Zhou, G. Generalized Energy-Based Models, (ICLR 2021)
Nowozin, Cseke, Tomioka, NeurIPS (2016) 3/33



The MMD, and MMD flow
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )� EQ f (Y )]

(F = unit ball in RKHS F)
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The MMD and witness in closed form

The MMD:

MMD(P ;Q ;F )

= sup
kf kF�1

[EP f (X )� EQ f (Y )]

= sup
kf kF�1

hf ; �P � �QiF

= k�P � �Qk

f �(x ) / �P (x )� �Q(x ) = EPk(X ; x )� EQk(Y ; x )

MMD(P ;Q ;F ) = EPk(x ; x 0) + EQk(y ; y 0)� 2EP ;Qk(x ; y)
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MMD Flow
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Motivation: Neural Net training

min
Z1;:::;ZN2Z

L

 
1
n

nX
i=1

�Zi

!

Optimization using gradient de-
scent:

Z t+1
i = Z t

i �
rZiL

 
1
n

nX
i=1

�Z t
i

!

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training
From previous slide:

min
�2P

L(�) := E(x ;y)[ky � EZ�� [�Z (x )]k2]

Want to prove global convergence of GD when n !1 and

�Z (x ) = wg�(x ); Z = (w ; �)

Connection to the MMD:

Assume well-specified setting, y = EU��? [�U (x )]
Random feature formulation,

L(�) = Ex

h
kEU��? [�U (x )]� EZ�� [�Z (x )]k2

i
= MMD2(�; �?)

The kernel is: k(U ;Z ) = Ex [�U (x )>�Z (x )].

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Intuition: MMD as “force field” on �

Assume henceforth

�; �� 2 P2(R
d) :=

�
� 2 P(Rd) :

Z
kxk2d�(x ) <1

�
:

MMD as free energy: target ��, current distribution �

F(�) :=
1
2
MMD2(��; �) = =

1
2
E�k(x ; x 0)| {z }
interaction

+
1
2
E��k(y ; y 0)| {z }
constant

� E�;��k(x ; y)| {z }
confinement

Consider fyig
n
i=1

i:i:d:
� �� and fxig

n
i=1

i:i:d:
� �.

Force on a particle z :

�
X

j

rz k(z ; xj ) +
X

j

rz k(z ; yj ) = �rz f̂ �?;�t (z )

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows
Tangent space of

�
P2(R

d);W2

�
is h 2 L2(�) where h : Rd ! R

d .
Define rW2F(�) of F at � using Taylor expansion

F((Id+ �h)#�) = F(�) + � hrW2F(�); hi� + o(�) (1)

Under reasonable assumptions [A. Theorem 10.4.13]

rW2F(�) = rF 0(�):

where first variation in direction �:

F(�+��) = F(�)+�

Z
F 0(�)(x )d�(x )+o(�) �+�� 2 P2(R

d) (2)

The gradient flow is:

@t�t = div(�trW2F(�t ))

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flow on MMD
First variation of 1

2MMD2(�?; �) =: F(�)

F 0(�)(z ) := f �?;�(z ) = 2 (EU��? [k(U ; z )]� EU�� [k(U ; z )])

The W2 gradient flow of the MMD:

@t�t = div(�trW2F(�t )) = div(�trf �?;�t )

McKean-Vlasov dynamics for particles (existence and uniqueness
under Assumption A):

dZt =�rZt f �?;�t (Zt )dt ; Z0 � �0

Assumption A: k(x ; x ) � K , for all x 2 Rd ,
Pd

i=1 k@ik(x ; �)k2 � K1d

and
Pd

i ;j=1 k@i@j k(x ; �)k2 � K2d , d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)
Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)
Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

�n+1 = (I � 
rf �?;�t )#�n

Zn+1 = Zn � 
rZn f �?;�n (Zn); Z0 � �0; Zn � �n

Under Assumption A, �n approaches �t as 
 ! 0

Consistency? Does �t converge to �? as t !1?

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency (1)
Can we use geodesic (displacement) convexity?

A geodesic �t between �1 and �2 is given by the transport map
T �2

�1 : Rd ! R
d :

�t =
�
(1� t)Id+ tT �2

�1

�
#�1

A functional F is displacement convex if:

F(�t ) � (1� t)F(�1) + tF(�2)

MMD is not displace-
ment convex in general
(it is always mixture
convex1).

Figure from Korba, Salim, ICML 2022 Tutorial, “Sampling as
First-Order Optimization over a space of probability measures”

1. F(t�1 + (1� t)�2) � tF(�1) + (1� t)F(�2) 8t 2 [0; 1]).
15/33



Consistency (2)
Dissipation inequalities:

Rate by which F decreases along the gradient flow [A, Proposition 2]

dF(�t )

dt
= �E�t [krf �?;�tk

2]

Assume the dissipation rate is controlled (path-dependent
Lojasiewicz inequality)

F(�t ) � CE�t [krf �?;�tk
2]

From above, [A, Proposition 7]:

F(�t ) �
1

F(�0)�1 + 2C�1t

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency (2)
Check: Lojasiewicz inequality for MMD?

Does there exist C > 0 such that

F(�t ) � CE�t [krf �?;�tk
2]

By Cauchy-Schwarz in the RKHS,[A, eq. 16]

F(�t ) =:
1
2
MMD2(�t ; �

?) � S(�?j�t )E�t [krf �?;�tk
2]

where S(�?j�t ) is the Negative Sobolev Distance1

Require S(�?j�t ) < C for entire sequence �t : hard to check in theory,
fails in practice.

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
1S(�?j�t ) = supg;EZ��t [krg(Z)k2]�1 jEZ��t [g(Z )]� EU��? [g(U )]j
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MMD flow in practice

Data
Particles
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Empirical observations

Some observations:

Almost all particles tend to collapse at the center of mass m of the
target �?, i.e.: (�t ' �m)
� However, the loss stops decreasing: rf �?;�t (z ) ' 0 for z on the

support of �t (and is small when far from �
?)...

� ...and in general, rf �?;�t (z ) 6= 0 outside the support of �t .

Can these observations be used to improve convergence?
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Noise injection to improve convergence
Noise injection: Evaluate rf �?;�t outside of the support of �t to get a
better signal!

Sample ut � N (0; 1) and �t is the noise level:

Zt+1 = Zt � 
rf �?;�t (Zt + �tut ); Zt � �t

Similar to continuation methods,2 but extended to interacting
particles.
Different from entropic regularization:

Zt+1 = Zt � 
rf �?;�t (Zt ) + �tut

2Chaudhari, Oberman, Osher, Soatto, Carlier. Deep relaxation: partial differential equations for

optimizing deep neural networks. Research in the Mathematical Sciences (2017)

Hazan, Levy, Shalev-Shwartz. On graduated optimization for stochastic non-convex problems. ICML

(2016).
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Noise injection: consistency
Recall: Zt+1 = Zt � 
rf �?;�t (Zt + �tut ); Zt � �t

Tradeoff for �t

Large �t : �t+1 � �t not a descent direction any more:
F(�t+1) > F(�t )

Small �t : Back to the failure mode: rf �?;�t (Zt + �tut ) ' 0

Need �t such that:

F(�t+1)�F(�t ) � �C
E Xt��t
ut�N (0;1)

[krf �?;�t (Xt + �tut )k
2]

tX
i

�2
i !

t!1
1

Then [A, Proposition 8]

F(�t ) � F(�0)e�C

Pt

i �
2
i :

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 21/33
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Noise injected MMD flow in practice
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Noise injection: neural net setting
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Noise injection: neural net setting

KSD is Kernel Sobolev Discrepancy. Y. Mroueh, T. Sercu, and A. Raj. “Sobolev Descent.”
In: AISTATS. 2019.
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The KALE, and KALE flow
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Reminder: the KALE divergence

KALE(P ;Q ;H) = sup
f 2H

EP f (X )� EQ exp (f (Y )) + 1

f = hw ; �(x )iH H anRKHS

kwk2H penalized

KALE(Q ;P ;H)=0.12

Glaser, Arbel, G. “KALE Flow: A Relaxed KL Gradient Flow for Probabilities with
Disjoint Support,” (NeurIPS 2021, Section 2) 26/33
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KALE vs KL vs MMD
A scaled KALE (non-degenerate for � = 0 or �!1):

KALE�(P ;Q ;H) = (1+ �) sup
f 2H

�
EP f (X )� EQ exp (f (Y ))

+ 1�
�

2
kf k2H

�

MMD limit:

lim
�!+1

KALE�(P ;Q ;H) =
1
2
MMD2(P ;Q):

KL limit (assuming log dP
dQ 2 H):

lim
�!0

KALE�(P ;Q ;H) = KL(P ;Q):

Glaser, Arbel, G. (NeurIPS 2021, Proposition 1)
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Wasserstein gradient flow on KALE
First variation of the KALE�(�; �

?)

@KALE�

@�
(�)(z ) := (1+ �) f �;�?(z )

where f �;�? is the solution of

f �;�? = argmax
f 2H

fK(f ; �)g ;

where

K(f ; �) := E�f (X )� E�� exp (f (Y )) + 1�
�

2
kf k2H

Proof (idea):

@KALE�

@�
= (1+ �)

"
@K(f �;�? ; �)

@�
+

@K(f ; �)
@f

����
f=f �;�?| {z }

=0

@f �;�?
@�

#

as long as @f �;�?
@�

exists (via implicit function theorem)
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Wasserstein gradient flow on KALE

The W2 gradient flow of the KALE:

@t�t = �(1+ �)div(�trf �t ;�?); �0 = P0

where
f �;�? = argmax

f
K(f ; �)

Glaser, Arbel, G. (NeurIPS 2021, Lemma 3)
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Consistency (2)
Again, under the (strong!) assumption

S(�?j�t ) := sup
g ;EZ��t [krg(Z )k2]�1

jEZ��t [g(Z )]� EU��? [g(U )]j

� C

we have
KALE(�t ) �

1
KALE(�0)�1 + C�1t

Once again, noise injection can be used (similar result to MMD flow).

Compare with linear rate for Wasserstein-2 flow on KL when �?

satisfies log-Sobolev inequality with constant �:
d
dt

KL(�t ; �
?) � �2�KL(�t ; �

?)

Glaser, Arbel, G. (NeurIPS 2021, Proposition 3)
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KALE flow vs MMD flow in practice

Glaser, Arbel, G. (NeurIPS 2021)
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Summary
Gradient flows based on kernel dependence measures:
� MMD flow is simpler, KALE flow is mode-seeking
� Noise injection can improve convergence

NeurIPS 2019, NeurIPS 2021

NeurIPS 2019:

NeurIPS 2021:

KALE as GAN critic:
ICLR 2021:

NeurIPS 2020:
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Questions?
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