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Questions we will solve
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Outline

Previous slides: Causal effect estimation, observed covariates:

Average treatment effect (ATE), conditional average treatment effect
(CATE)

These slides: Causal effect estimation, hidden covariates:

... instrumental variables, proxy variables

What’s new? What is it good for?

Treatment A, covariates X , etc can be multivariate, complicated...

...by using kernel or adaptive neural net feature representations
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Model assumption: linear functions of features
All learned functions will take the form:

(x ) = >'(x ) = h; '(x )iH

Option 1: Finite dictionaries of learned neural net features '�(x )
(linear final layer )

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

h'(xi ); '(x )iH = k(xi ; x )

Kernel is feature dot product.
Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika, in revision)
Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Model fitting: ridge regression
Learn 0(x ) := E[Y jX = x ] from features '(xi ) with outcomes yi :

̂ = argmin
2H

 nX
i=1

(yi � h; '(xi )iH)
2 + �kk2H

!
:

Kernel solution at x
(as weighted sum of y)

̂(x ) =
nX

i=1

yi�i (x )

�(x ) = (KXX + �I )�1kXx

(KXX )ij = k(xi ; xj ) = h'(xi ); '(xj )iH
(kXx )i = k(xi ; x )
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What if there are hidden confounders?
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Illustration: ticket prices for air travel
Ticket price A, seats sold Y .

What is the effect on seats sold Y (a) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible
Approach for Counterfactual Prediction.
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Illustration: ticket prices for air travel
Unobserved variable " =desire for travel, affects both price (via airline
algorithms) and seats sold.

Desire for travel:
" � N (�; 0:1)
� � U

n
�1

2 ; 0;
1
2

o

Price:
A = "+ Z ;

Seats sold:
Y = 10�A + 2"

Z is an instrument (cost of fuel). Condition on Z,

E[Y jZ ] = 10� E[AjZ ] + 2E["jZ ]| {z }
=0

Regressing from E[AjZ ] to E[Y jZ ] recovers ATE!
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IV: the linear case
Output y 2 R; noise " 2 R, input a with NN features ��(a).
Crucially, " 6?? a and

Ca" := E[��(A)"] 6= 0

Average treatment effect:

y = 0
>��(a) + " E(") = 0

ATE := E(Y (a)) =

Z
(0

>��(a) + ")dP(") = 0
>��(a):

Least-squares loss for ,�:

L(; �) = E

Y � >��(A)� "
2

Minimizing for ,

0 = C�1
aa (Cay �Ca") Caa = E[��(A)��(A)>]

Cay = E[��(A)Y ]

...but we don’t have Ca":
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Instrumental variable regression
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Instrumental variable regression with NN features
Definitions:

": unobserved confounder.

A: treatment

Y : outcome

Z : instrument

Assumptions

E["] = 0 E["jZ ] = 0

Z 6?? A

(Y ?? Z jA)G
�A

Y = >��(A) + "

"

A YZ

Average treatment effect:

ATE(a) =
Z
E(Y j"; a)dp(") = >��(a)

IV regression: Condition both sides on Z ,

E[Y jZ ] = >E[��(A)jZ ] + E["jZ ]| {z }
=0

Newey, Powell (2003): Instrumental variable estimation of nonparametric models.
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Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeatureIV/ 12/39

https://github.com/liyuan9988/DeepFeatureIV/


Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeatureIV/ 13/39

https://github.com/liyuan9988/DeepFeatureIV/


IV using neural net features
Stage 2 regression (IV): learn NN features ��(A) and linear layer  to
obtain Y with RR loss:

EYZ

h
(Y � >E[��(A)jZ ])2

i
+ �2kk

2

Stage 1 regression: learn NN features ��(Z ) and linear layer F :

E[��(A)jZ ] � F��(Z )

with RR loss
Ek��(A)� F��(Z )k2 + �1kFk2HS

Challenge: how to learn �?
From Stage 2 regression?
...which requires E[��(A)jZ ] from Stage 1 regression
...which requires ��(A)... which requires �...

Use the linear final layers! (i.e.  and F )

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/39
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Stage 2: IV regression
Stage 2 regression (IV): learn NN features ��(A) and linear layer  to
obtain Y with RR loss:

L2(; �) = EYZ

h
(Y � >E[��(A)jZ ])2

i
+ �2kk

2

̂� in closed form wrt ��:

̂� := fCYZ (fCZZ + �2I )�1 fCYZ = E

h
Y [F̂ �;���(Z )]>

i
fCZZ = E

h
[F̂ �;���(Z )] [F̂ �;���(Z )]>

i

From linear final layers in Stages 1,2:
Learn ��(A) by plugging ̂� into S2 loss, taking gradient steps for �
....but � changes with �

...so alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/39
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...so alternate first and second stages until convergence.
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Stage 2: IV regression
Stage 2 regression (IV): learn NN features ��(A) and linear layer  to
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Neural IV in reinforcement learning

Policy evaluation: want Q-value:

Q�(s ; a) = E

"
1X
t=0

tRt

�����S0 = s ;A0 = a

#
for policy �(AjS = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite
Tassa et al. (2020). dm_control:Software and tasks for continuous control.
https://github.com/deepmind/dm_control
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Application of IV: reinforcement learning
Q value is a minimizer of Bellman loss

LBellman = ESAR

h�
R + [E

�
Q�(S 0;A0)

��S ;A��Q�(S ;A)
�2i

:

Corresponds to “IV-like” problem

LBellman = EYZ

h
(Y � E[f (X )jZ ])2

i
with

Y = R;

X = (S 0;A0;S ;A)

Z = (S ;A);

f0(X )= Q�(s ; a)� Q�(s 0; a 0)

RL experiments and data:
https://github.com/liyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regression for
Deep Offline Policy Evaluation.
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Results on mountain car problem

Good performance compared with FQE.
Warning: IV assumption can fail when regression underfits. See
papers for details.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regression for
Deep Offline Policy Evaluation.
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...but seriously, what if there are hidden
confounders?
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The proxy correction
Unobserved " with (possibly) complex nonlinear effects on A;Y
The definitions are:

": unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

If " were observed (which it
isn’t),

E[Y (a)] =

Z
E[Y j"; a ]dp(")

"

A Y

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.

21/39



The proxy correction
Unobserved " with (possibly) complex nonlinear effects on A;Y
The definitions are:

": unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.

21/39



Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):

Code for NN and kernel proxy methods:
https://github.com/liyuan9988/DeepFeatureProxyVariable/ 22/39

https://github.com/liyuan9988/DeepFeatureProxyVariable/


The proxy correction
Unobserved " with (possibly) complex nonlinear effects on A;Y
The definitions are:

": unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

" WZ

A Y

Structural assumption:

W ?? (Z ;A)j"

Y ?? Z j(A; ")

=) Can recover E(Y (a)) from observational data!

23/39



Main theorem
If " were observed, we would write (average treatment effect)

p(y jdo(a)) =
Z
u
p(y ja ; ")p(")d":

....but we do not observe ":

Main theorem: Assume we solved:

p(y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

(Fredholm integral equation of the first kind)
Average treatment effect with p(w):

p(y jdo(a)) =
Z

hy(a ;w)p(w)dw

Both p(y ja ; z ) and p(w ja ; z ) are in terms of observed quantities, and
can be learned from data.
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Proof (1)

Because W ?? (Z ;A)j", we have

p(w ja ; z ) =
Z

p(w j")p("ja ; z )d"

Because Y ?? Z j(A; ") we have

p(y ja ; z ) =
Z

p(y ja ; ")p("ja ; z )d"
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Proof (3)
Given the solution hy to:

p(y ja ; z ) =
Z

hy(w ; a)p(w ja ; z )dw

(well defined under identifiability conditions for Fredholm equation of first kind)

From last slideZ
p(y ja ; ")p("ja ; z )d" =

Z
hy(w ; a)

Z
p(w j")p("ja ; z )d"dw

This implies:

p(y ja ; ") =
Z

hy(w ; a)p(w j")dw

under identifiability condition

E[f (")jA = a ;Z = z ] = 0; PZ jA=a a:s: () f (") = 0; P"jA=a a:s: (4)
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Proof (4)

From last slide,

p(y ja ; ") =
Z

hy(w ; a)p(w j")dw

Thus

p(y jdo(a)) =
Z
u
p(y ja ; ")p(")du

=

Z
u

�Z
hy(w ; a)p(w j")dw

�
p(")d"

=

Z
hy(w ; a)p(w)dw
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Feature implementation
Stage 2: minimize

h�2 = argmin
h2H

Ey ;a ;z

�
y �

D
h ; �W ja ;z 
 �(a)

E�2
+ �2khk2H

which is conditional feature mean implementation of

p(y ja ; z ) =
Z

hy(w ; a)p(w ja ; z )dw

Stage 1: ridge regression

F�1 = arg min
F2HS

Ew ;a ;z k�(w)� F [�(a)
 �(z )]k2HW + �1kFk2HS

which gives us
�W ja ;z = F�1 [�(a)
 �(z )]

Average treatment effect estimate:

Ey(y jdo(a)) = hh�2 ; �(a)
 �W i ;

where �W = EW �(W )

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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Failures of identifiability assumptions (1)

Recall (one of the) identifiability assumptions:

E[f (")jA = a ;Z = z ] = 0; PZ jA=a a:s: () f (") = 0; P"jA=a a:s: (4)

For conciseness, assume conditioning on some a .
Failure 1: Z ?? " (no information about " in proxy)

g(") = ~g(")� E"~g(")

E(g(")jZ ) = Eg(") = 0:

29/39



Failures of identifiability assumptions (2)
Failure 2: “exploitable invariance” of p("jz )

" � N (0; 1);

Z = j"j+N (0; 1);

where p("jz ) / p(z j")p(") symmetric in ". Consider square integrable
antisymmetric function g(") = �g(�"): ThenZ 1

�1
g(")p("jz )d"

=

Z 0

�1
g(")p("jz )d"+

Z 1

0
g(")p("jz )d"

= 0:

If distribution of "jZ retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(") with
zero mean on this class.
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How not to do it
Stage 2: minimize

h�2 = argmin
h2H

Ey ;a ;z

�
y �

D
h ; �W ;Aja ;z

E�2
+ �2khk2H

which is conditional feature mean implementation of

p(y ja ; z ) =
Z

hy(w ; a)p(w ja ; z )dw

Stage 1: ridge regression

F�1 = argmin
F2G

Ew ;a ;z k�(w)
 �(a)� F [�(a)
 �(z )]k2HW + �1kFk2HS

which gives us
�W ;Aja ;z = F�1 [�(a)
 �(z )]

Problem: ridge regressing from �(a) to �(a):
Theoretical issue: IHA is not Hilbert-Schmidt so consistency of F not
established.
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Demo: bias introduced by stage 1 RR

Implementation issue: this can introduce unnecessary bias.

Stage 1:

a � N (0; �2):

Stage 2:

a � U [�3; 3]:
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Synthetic experiment, adaptive neural net features

dSprite example:
X = fscale; rotation; posX; posYg

Treatment A is the image generated (with
Gaussian noise)

Outcome Y is quadratic function of A with
multiplicative confounding by posY.

Z = fscale; rotation; posXg;

W = noisy image sharing posY

1000 5000
Data Size

5

10

20

Ou
t-o

f-S
am

pl
e 

M
SE

Algorithm
KPV
PMMR
CEVAE
DFPV
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Confounded offline policy evaluation

Synthetic dataset, demand prediction
for flight purchase.

Treatment A is ticket price.

Policy A � �(Z ) depends on fuel
price.

1500 7500
Data Size

0.1

1

10

Ab
us

ol
ut

e 
Er

ro
r

Algorithm
KPV
PMMR
DFPV
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Conclusions

Neural net and kernel solutions:

...for instrumental variable regression

...for proxy methods

...with treatment A, covariates X ;V , proxies (W ;Z ) multivariate,
“complicated”

Convergence guarantees for kernels and NN

Code available for all methods
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Questions?
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Proxy proof (discrete variables)
If X were observed,

P(Y jdo(a)) :=
DX

i=1

P(y jxi ; a)P(xi )

= P(y jX ; a)P(X )

Because W ?? (Z ;A)jX ,

P(W jZ ; a) = P(W jX )P(X jZ ; a)

=) P(X jZ ; a) = P�1(W jX )P(W jZ ; a)

Because Y ?? Z j(A;X ),

P(y jZ ; a) = P(y jX ; a)P�1(W jX )P(W jZ ; a)| {z }
P(X jZ ;a)

=) p(y jX ; a) = p(y jZ ; a)P�1(W jZ ; a)P(W jX )

The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A Y ?
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
either direction (or both).

X WZ

A Y

Not all edges need be present.
Structural assumption:

W Z A X

Y Z A X
Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 28/38
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The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A Y ?
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
either direction (or both).

X WZ

A Y

Not all edges need be present.
Structural assumption:

W Z A X

Y Z A X
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Proof (discrete variables)

From previous slide:

p(y jX ; a) = p(y jZ ; a)P�1(W jZ ; a)P(W jX )

Multiply LHS and RHS by P(X ):

P(Y (a)) := P(y jX ; a)P(X )

= p(y jZ ; a)P�1(W jZ ; a)P(W jX )P(X )| {z }
P(W )
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Average causal effect using only observed data!
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