Divergence measures for comparing distributions and training generative models: Part 1

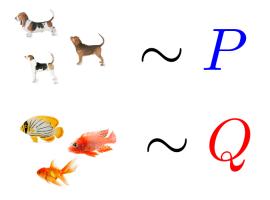
Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

DeepLearn, 2022

A motivation: comparing two samples

- Given: Samples from unknown distributions P and Q.
- Goal: do P and Q differ?



A real-life example: two-sample tests

■ Goal: do P and Q differ?

CIFAR 10 samples

Cifar 10.1 samples

Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests, ICML 2020

Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

Training generative models

- Have: One collection of samples X from unknown distribution P.
- Goal: generate samples Q that look like P

LSUN bedroom samples P

Generated Q, MMD GAN

Training a Generative Adversarial Network

(Binkowski, Sutherland, Arbel, G., ICLR 2018), (Arbel, Sutherland, Binkowski, G., NeurIPS 2018)

A second task: dependence testing

■ Given: Samples from a distribution P_{XY}

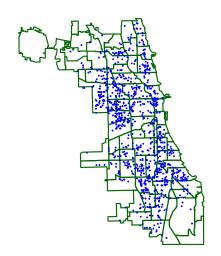
■ Goal: Are X and Y independent?

X	Υ
	A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose.
	Their noses guide them through life, and they're never happier than when following an interesting scent.
	A responsive, interactive pet, one that will blow in your ear and follow you everywhere.
Text from dogtime.com and petfinder.com	

A third task: testing goodness of fit

- Given: A model P and samples Q.
- Goal: is P a good fit for Q?

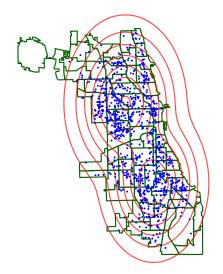
Chicago crime data



A third task: testing goodness of fit

■ Given: A model P and samples Q.

■ Goal: is P a good fit for Q?



Chicago crime data

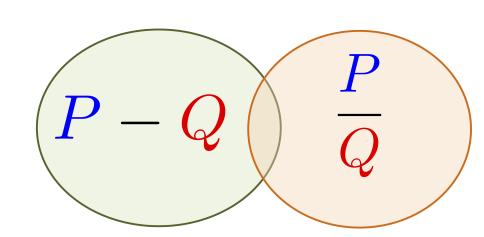
Model is Gaussian mixture with two components. Is this a good model?

Outline

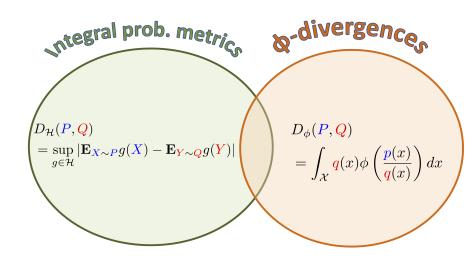
- Maximum Mean Discrepancy (MMD)...
 - ...as a difference in feature means
 - ...as an integral probability metric (not just a technicality!)
- A statistical test based on the MMD
 - learn adaptive NN features
- Training GANs generative adversarial networks with MMD
 - learn adaptive NN features
- Next parts:
 - φ-divergences for training GANS and Generalized Energy-Based models,
 - Kernel dependence measures, Stein discrepancies for goodness-of-fit (if time!)

Divergence measures

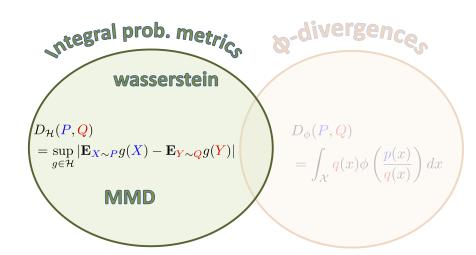
Divergences



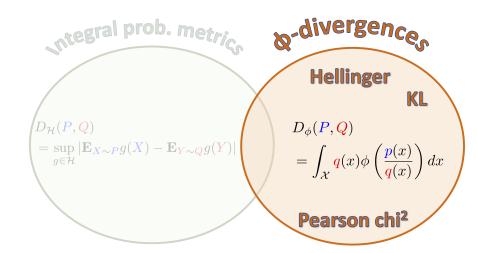
Divergences



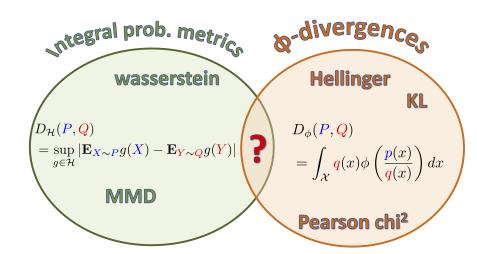
The integral probability metrics



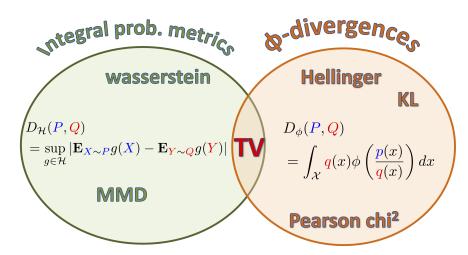
The ϕ -divergences



Divergences



Divergences

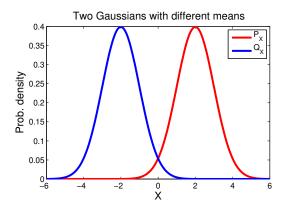


Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

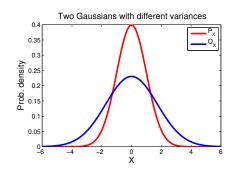
The MMD

■ Simple example: 2 Gaussians with different means

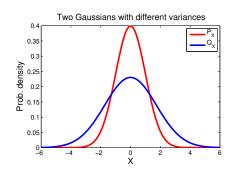
Answer: t-test

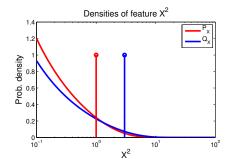


- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$

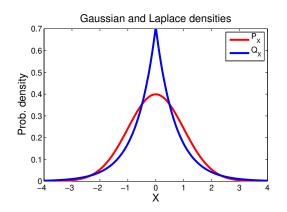


- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form $\varphi(x) = x^2$





- Gaussian and Laplace distributions
- Same mean *and* same variance
- Difference in means using higher order features...RKHS



Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$oldsymbol{arphi}(x) = [\dots arphi_i(x) \dots] \in oldsymbol{\ell}_2$$

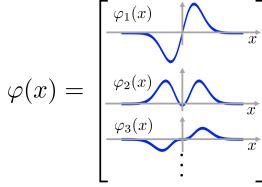
For positive definite k,

$$k(x,x') = \langle arphi(x), arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x - x'
ight\|^2\right)$$



Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 18/75

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P \left[\varphi_i(X) \right] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_P, \mu_{Q}
angle_{\mathcal{F}} = \mathrm{E}_{P,Q} k(\pmb{x}, \pmb{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X} , define feature map of probability P,

$$\mu_P = [\dots \mathbf{E}_P \left[\varphi_i(X) \right] \dots]$$

For positive definite k(x, x'),

$$\langle \mu_{I\!\!P}, \mu_{I\!\!Q}
angle_{\mathcal{F}} = \mathrm{E}_{I\!\!P,I\!\!Q} k(m{x},m{y})$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$MMD^2(P, Q) = \|\mu_P - \mu_Q\|_{\mathcal{F}}^2$$

= $\langle \mu_P - \mu_Q, \mu_P - \mu_Q \rangle_{\mathcal{F}}$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$egin{aligned} MMD^2(P,Q) &= \left\| \mu_P - \mu_Q
ight\|_{\mathcal{F}}^2 \ &= \left\langle \mu_P - \mu_Q, \mu_P - \mu_Q
ight
angle_{\mathcal{F}} \ &= \left\langle \mu_P, \mu_P
ight
angle_{\mathcal{F}} + \left\langle \mu_Q, \mu_Q
ight
angle_{\mathcal{F}} - 2 \left\langle \mu_P, \mu_Q
ight
angle_{\mathcal{F}} \end{aligned}$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$\begin{split} MMD^{2}(P,Q) &= \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2} \\ &= \langle \mu_{P} - \mu_{Q}, \mu_{P} - \mu_{Q} \rangle_{\mathcal{F}} \\ &= \underbrace{\mathbb{E}_{P}k(X,X')}_{(a)} + \underbrace{\mathbb{E}_{Q}k(Y,Y')}_{(a)} - 2\underbrace{\mathbb{E}_{P,Q}k(X,Y)}_{(b)} \end{split}$$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Illustration of MMD

- Dogs (= P) and fish (= Q) example revisited
- Each entry is one of $k(dog_i, dog_j)$, $k(dog_i, fish_j)$, or $k(fish_i, fish_j)$

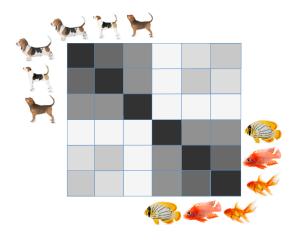


Illustration of MMD

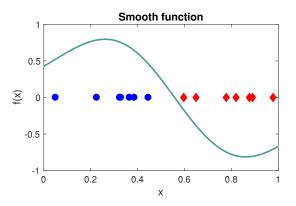
The maximum mean discrepancy:

$$\begin{split} \widehat{MMD}^2 = & \frac{1}{n(n-1)} \sum_{i \neq j} k(\mathsf{dog}_i, \mathsf{dog}_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\mathsf{fish}_i, \mathsf{fish}_j) \\ & - \frac{2}{n^2} \sum_{i,j} k(\mathsf{dog}_i, \mathsf{fish}_j) \\ & k(\mathsf{dog}_i, \mathsf{dog}_j) \quad k(\mathsf{dog}_i, \mathsf{fish}_j) \\ & k(\mathsf{fish}_j, \mathsf{dog}_i) \quad k(\mathsf{fish}_i, \mathsf{fish}_j) \end{split}$$

Integral probability metric:

Find a "well behaved function" f(x) to maximize

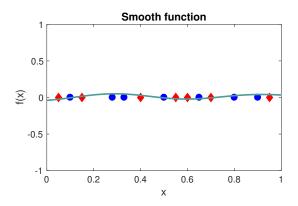
$$\mathrm{E}_{P}f(X)-\mathrm{E}_{Q}f(Y)$$



Integral probability metric:

Find a "well behaved function" f(x) to maximize

$$\mathrm{E}_{P}f(X)-\mathrm{E}_{Q}f(Y)$$



Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}; F) := & \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\operatorname{E}_{P} f(X) - \operatorname{E}_{\column{Q}} f(\column{Y})
ight] \ & (F = \operatorname{unit\ ball\ in\ RKHS\ } \mathcal{F}) \end{aligned}$$

Maximum mean discrepancy: smooth function for P vs Q

$$\begin{split} \mathit{MMD}(P, \begin{subarray}{l} Q; F) &:= \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} f(\begin{subarray}{l} Y \end{subarray}
ight] \ (F = \mathrm{unit\ ball\ in\ RKHS\ } \mathcal{F}) \end{split}$$

Functions are linear combinations of features:

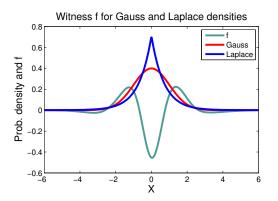
$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\top} \begin{bmatrix} \varphi_1(x) & & \\ \varphi_2(x) & & \\ \varphi_3(x) & & \\ \vdots & & \end{bmatrix}$$

$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 < 1$$

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \mathbf{Q}; F) := \sup_{\|f\|_{\mathcal{F}} \le 1} [\mathbb{E}_P f(X) - \mathbb{E}_{\mathbf{Q}} f(\mathbf{Y})]$$

$$(F = \text{unit ball in RKHS } \mathcal{F})$$



Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} \mathit{MMD}(P, \column{Q}; F) := & \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\operatorname{E}_{P} f(X) - \operatorname{E}_{\column{Q}} f(\column{Y})
ight] \ & (F = \operatorname{unit\ ball\ in\ RKHS\ } \mathcal{F}) \end{aligned}$$

For characteristic RKHS
$$\mathcal{F}$$
, $MMD(P, Q; F) = 0$ iff $P = Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

Maximum mean discrepancy: smooth function for P vs Q

$$MMD(P, \mathbf{Q}; F) := \sup_{\|f\|_{\mathcal{F}} \le 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{\mathbf{Q}}f(\mathbf{Y})]$$

$$(F = \text{unit ball in RKHS } \mathcal{F})$$

Expectations of functions are linear combinations of expected features

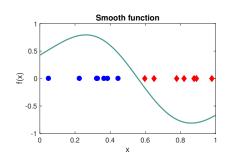
$$\mathrm{E}_P(f(X)) = \langle f, \mathrm{E}_P arphi(X)
angle_{\mathcal{F}} = \langle f, \mu_P
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

Integral prob. metric vs feature mean difference

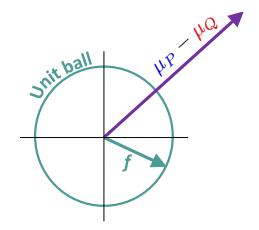
The MMD:

$$egin{aligned} & MMD(P, \column{Q}; F) \ &= \sup_{\|f\| \le 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{\column{Q}} f(\column{Y})
ight] \end{aligned}$$

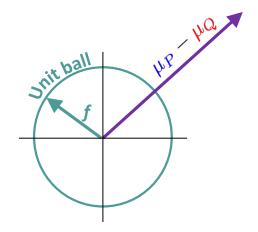


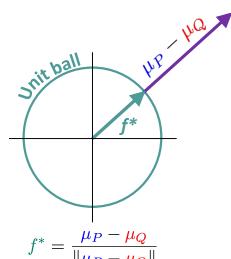
$$egin{align} MMD(P, m{\mathcal{Q}}; F) & ext{use} \ &= \sup_{\|f\| \leq 1} \left[\mathbb{E}_P f(X) - \mathbb{E}_{m{\mathcal{Q}}} f(m{Y})
ight] & \mathbb{E}_P f(X) = \langle \mu_P, f \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \sup_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| \leq 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}} \ &= \lim_{\|f\| = 1} \langle f, \mu_P - \mu_{m{\mathcal{Q}}} \rangle_{\mathcal{F}}$$

$$egin{aligned} &MMD(P, oldsymbol{Q}; F) \ &= \sup_{\|f\| \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(Y)
ight] \ &= \sup_{\|f\| < 1} \left\langle f, \mu_P - \mu_{oldsymbol{Q}}
ight
angle_{\mathcal{F}} \end{aligned}$$



$$egin{aligned} &MMD(P, \cline{Q}; F) \ &= \sup_{\|f\| \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_Q f(Y)
ight] \ &= \sup_{\|f\| < 1} \left\langle f, \mu_P - \mu_Q
ight
angle_{\mathcal{F}} \end{aligned}$$



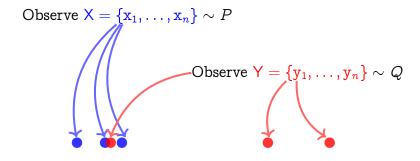


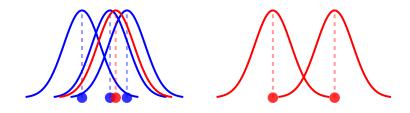
$$f^* = \frac{\mu_P - \mu_Q}{\|\mu_P - \mu_Q\|}$$

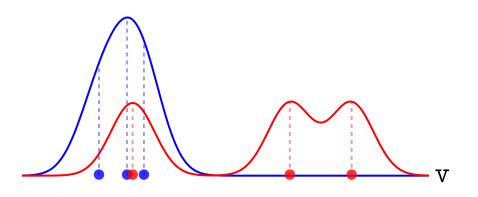
The MMD:

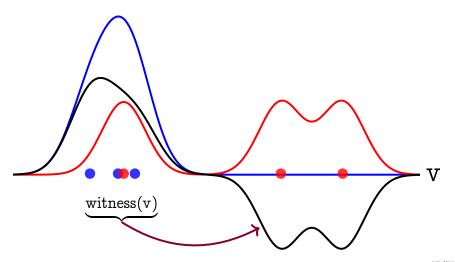
```
egin{aligned} &MMD(P, \column{2}{Q}; F) \ &= \sup_{\|f\| \leq 1} \left[ \operatorname{E}_P f(X) - \operatorname{E}_Q f(Y) 
ight] \ &= \sup_{\|f\| \leq 1} \left\langle f, \mu_P - \mu_Q 
ight
angle_{\mathcal{F}} \ &= \|\mu_P - \mu_Q\|_{\mathcal{F}} \end{aligned}
```

IPM view equivalent to feature mean difference (kernel case only)









Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, arphi(v)
angle_{\mathcal{F}}$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{\pmb{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v) = \langle f^*, \varphi(v) \rangle_{\mathcal{F}} \ \propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, \varphi(v) \rangle_{\mathcal{F}}$$

Recall the witness function expression

$$f^* \propto \mu_P - \mu_Q$$

The empirical feature mean for P

$$\widehat{m{\mu}}_P := rac{1}{n} \sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\mu}_{P} - \widehat{\mu}_{oldsymbol{Q}}, arphi(v)
angle_{\mathcal{F}} \ &= rac{1}{n} \sum_{i=1}^{n} k(\pmb{x_i}, v) - rac{1}{n} \sum_{i=1}^{n} k(\pmb{ extbf{y}_i}, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := [f_1^* f_2^* \dots]$

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

How does this help decide whether P = Q?

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

Perspective from statistical hypothesis testing:

- Null hypothesis \mathcal{H}_0 when P = Q
 - should see \widehat{MMD}^2 "close to zero".
- Alternative hypothesis \mathcal{H}_1 when $P \neq Q$
 - should see \widehat{MMD}^2 "far from zero"

A statistical test using MMD

The empirical MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x_i}, \pmb{ extbf{y}}_j) \end{aligned}$$

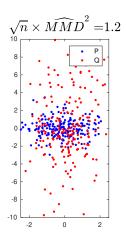
Perspective from statistical hypothesis testing:

- Null hypothesis \mathcal{H}_0 when P = Q
 - should see \widehat{MMD}^2 "close to zero".
- Alternative hypothesis \mathcal{H}_1 when $P \neq Q$
 - should see \widehat{MMD}^2 "far from zero"

Want Threshold c_{α} for \widehat{MMD}^2 to get false positive rate α

Draw n = 200 i.i.d samples from P and Q

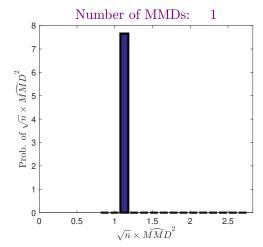
- Laplace with different y-variance.
- $\sqrt{n} \times \widehat{MMD}^2 = 1.2$

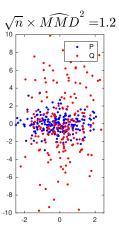


Draw n = 200 i.i.d samples from P and Q

■ Laplace with different y-variance.

$$\sqrt{n} \times \widehat{MMD}^2 = 1.2$$

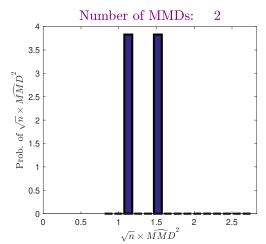


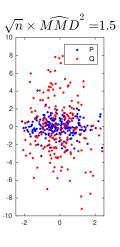


Draw n = 200 new samples from P and Q

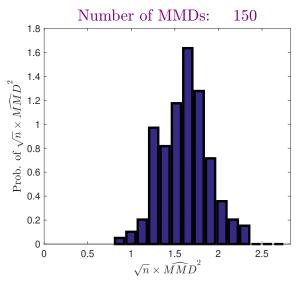
■ Laplace with different y-variance.

$$\sqrt{n} \times \widehat{MMD}^2 = 1.5$$

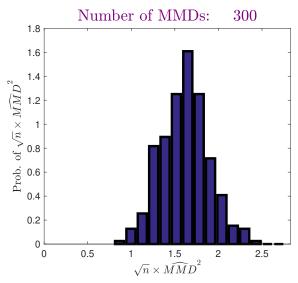




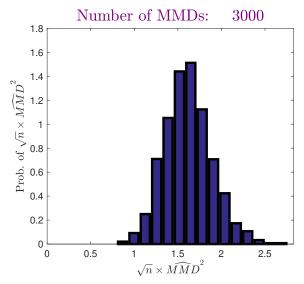
Repeat this 150 times ...



Repeat this 300 times ...



Repeat this 3000 times ...

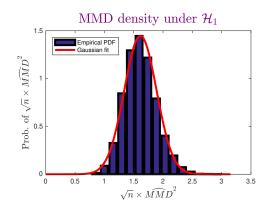


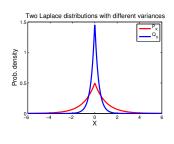
Asymptotics of \widehat{MMD}^2 when $P \neq Q$

When $P \neq Q$, statistic is asymptotically normal,

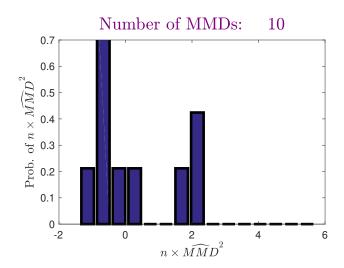
$$rac{\widehat{ ext{MMD}}^2 - ext{MMD}^2(extit{P}, rac{ extstyle Q}{ extstyle Q})}{\sqrt{V_n(extit{P}, rac{ extstyle Q}{Q})}} \stackrel{D}{\longrightarrow} \mathcal{N}(0, 1),$$

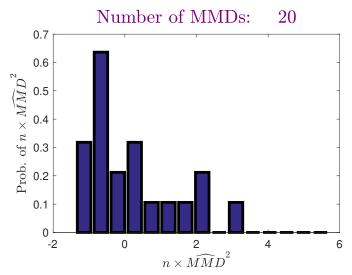
where variance $V_n(P,Q) = O(n^{-1})$.

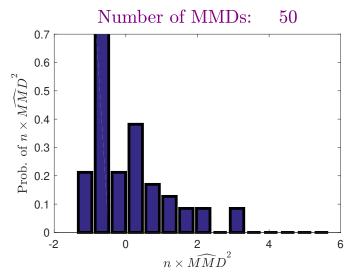


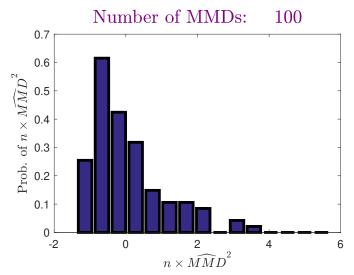


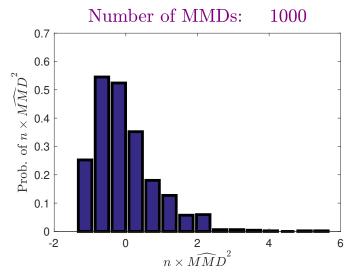
What happens when P and Q are the same?







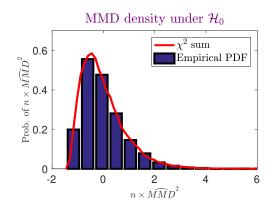




Asymptotics of \widehat{MMD}^2 when P = Q

Where P = Q, statistic has asymptotic distribution

$$n\widehat{ ext{MMD}}^2 \sim \sum_{l=1}^\infty \lambda_l \left[z_l^2 - 2
ight]$$

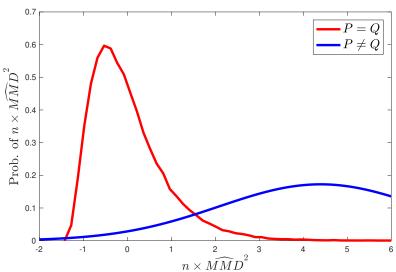


where

$$\lambda_i \psi_i(x') = \int_{\mathcal{X}} \underbrace{ ilde{k}(x,x')}_{ ext{control}} \psi_i(x) dP(x)$$

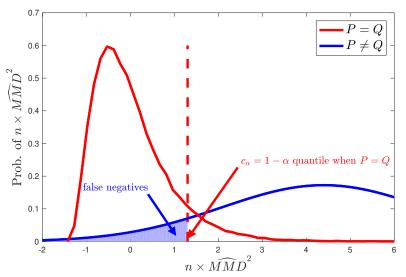
$$z_l \sim \mathcal{N}(0,2)$$
 i.i.d.

A statistical test



A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

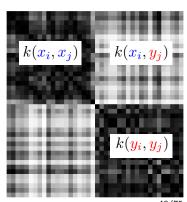


How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$X = \begin{bmatrix} & & & \\ & & &$$

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x_i}, \pmb{x_j}) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{y_i}, \pmb{y_j}) \ &- rac{2}{n^2} \sum_{i
eq j} k(\pmb{x_i}, \pmb{y_j}) \end{aligned}$$



40/75

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

$$\widetilde{Y} = [$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

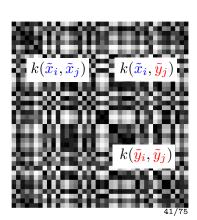
$$\widetilde{X} = \begin{bmatrix} \bigcirc & \bigcirc & \bigcirc & \cdots \end{bmatrix}$$

$$\widetilde{Y} = [$$

$$egin{aligned} \widehat{MMD}^2 = &rac{1}{n(n-1)} \sum_{i
eq j} k(ilde{m{x}}_i, ilde{m{x}}_j) \ &+ rac{1}{n(n-1)} \sum_{i
eq j} k(ilde{m{y}}_i, ilde{m{y}}_j) \ &- rac{2}{n^2} \sum_{i
eq i} k(ilde{m{x}}_i, ilde{m{y}}_j) \end{aligned}$$

Permutation simulates

$$P = Q$$



How do we get test threshold c_{α} ?

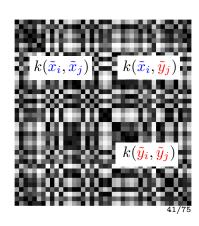
Permuted dog and fish samples (merdogs):

$$\widetilde{X} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

$$\widetilde{Y} = [$$

Exact level α (upper bound on false positive rate) at finite n and number of permutations (when unpermuted statistic included in pool)

Proposition 1, Schrab, Kim, Albert, Laurent, Guedj, Gretton (2021), MMD Aggregated Two-Sample Test, arXiv:2110.15073



How to choose the best kernel: optimising the kernel parameters

The best test for the job

- A test's power depends on k(x, x'), P, and Q (and n)
- With characteristic kernel, MMD test has power $\rightarrow 1$ as $n \rightarrow \infty$ for any (fixed) problem
 - But, for many P and Q, will have terrible power with reasonable n!

The best test for the job

- A test's power depends on k(x, x'), P, and Q (and n)
- With characteristic kernel, MMD test has power \rightarrow 1 as $n \rightarrow \infty$ for any (fixed) problem
 - But, for many P and Q, will have terrible power with reasonable n!
- You can choose a good kernel for a given problem
- You *can't* get one kernel that has good finite-sample power for all problems
 - "No one test can have all that power"

■ Simple choice: exponentiated quadratic

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

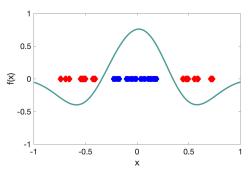
Characteristic: for any σ : for any P and Q, power $\to 1$ as $n \to \infty$

$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

- Characteristic: for any σ : for any P and Q, power $\to 1$ as $n \to \infty$
- But choice of σ is very important for finite n...

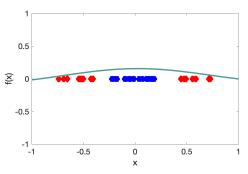
$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

- **Characteristic:** for any σ : for any P and Q, power $\to 1$ as $n \to \infty$
- But choice of σ is very important for finite n...



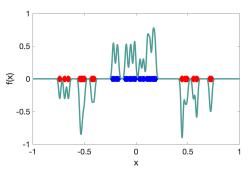
$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

- Characteristic: for any σ : for any P and Q, power $\to 1$ as $n \to \infty$
- But choice of σ is very important for finite n...



$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

- **Characteristic:** for any σ : for any P and Q, power $\to 1$ as $n \to \infty$
- But choice of σ is very important for finite n...

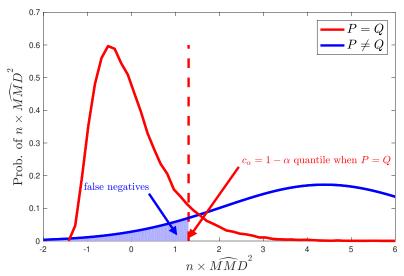


$$k(x,y) = \exp\left(-rac{1}{2\sigma^2}\|x-y\|^2
ight)$$

- **Characteristic:** for any σ : for any P and Q, power $\to 1$ as $n \to \infty$
- But choice of σ is very important for finite n...
- $lue{}$... and some problems (e.g. images) might have no good choice for σ

Graphical illustration

Maximising test power same as minimizing false negatives



The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$\Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{lpha}
ight)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & ext{Pr}_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{lpha}
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}
ight) \end{split}$$

where

- \blacksquare Φ is the CDF of the standard normal distribution.
- \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$ext{Pr}_1\left(n\widehat{ ext{MMD}}^2>\hat{c}_{lpha}
ight) \ o \Phi\left(\underbrace{rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}}_{O(n^{1/2})} - \underbrace{rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}}_{O(n^{-1/2})}
ight)$$

For large n, second term negligible!

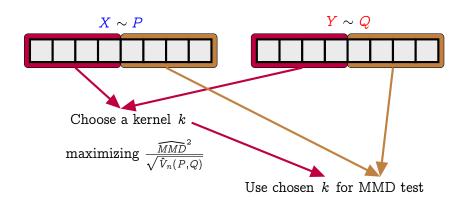
The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{lpha}
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}
ight) \end{split}$$

To maximize test power, maximize

$$\frac{\text{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

Data splitting

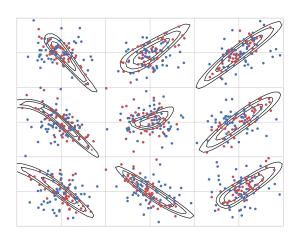


Learning a kernel helps a lot

Kernel with deep learned features:

$$k_{ heta}(x,y) = \left[(1-\epsilon) \kappa(\Phi_{ heta}(x),\Phi_{ heta}(y)) + \epsilon
ight] rac{oldsymbol{q}}{oldsymbol{q}}(x,y)$$

 κ and q are Gaussian kernels



Learning a kernel helps a lot

Kernel with deep learned features:

$$k_{ heta}(x,y) = \left[(1-\epsilon) \kappa(\Phi_{ heta}(x),\Phi_{ heta}(y)) + \epsilon
ight] rac{oldsymbol{q}}{oldsymbol{q}}(x,y)$$

- κ and q are Gaussian kernels
- CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

CIFAR-10.1 (Recht+ ICML 2019)

$$Y \sim Q$$

Learning a kernel helps a lot

Kernel with deep learned features:

$$k_{ heta}(x,y) = \left[(1-\epsilon) \kappa(\Phi_{ heta}(x),\Phi_{ heta}(y)) + \epsilon
ight] rac{oldsymbol{q}}{oldsymbol{q}}(x,y)$$

 κ and q are Gaussian kernels

■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning

[Submitted on 21 Feb 2020]

Learning Deep Kernels for Non-Parametric Two-Sample Tests

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

ICML 2020

Code: https://github.com/fengliu90/DK-for-TST

Adaptive testing without data splitting?

Adaptive testing without data splitting?

Code: https://github.com/antoninschrab/mmdagg-paper

MMD for GAN training

Training implicit generative models

- Have: One collection of samples X from unknown distribution P.
- Goal: generate samples Q that look like P

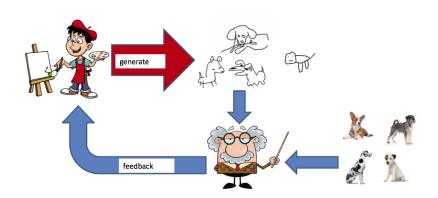
LSUN bedroom samples *P*

Generated Q, MMD GAN

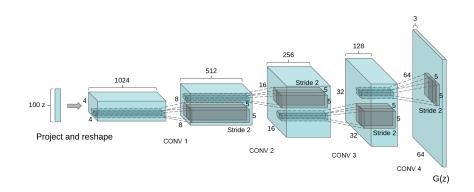
Using a critic D(P, Q) to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018), (Arbel, Sutherland, Binkowski, G., NeurIPS 2018)

Visual notation: GAN setting



What I won't cover yet: the generator



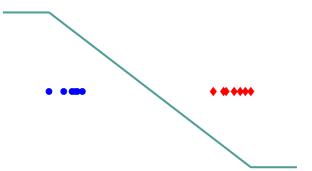
Radford, Metz, Chintala, ICLR 2016

Wasserstein distance as critic

A helpful critic witness:

$$W_1(P, rac{Q}{Q}) = \sup_{\|f\|_L \le 1} E_P f(X) - E_Q f(rac{Y}{Q}).$$

 $\|f\|_L := \sup_{x \ne y} |f(x) - f(y)| / \|x - y\|$
 $W_1 = 0.88$

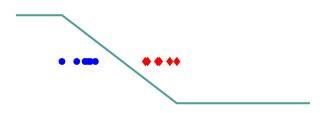


Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019) M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

Wasserstein distance as critic

A helpful critic witness:

$$egin{align} W_1(P, \begin{subarray}{c} oldsymbol{Q} \end{pmatrix} &= \sup_{\|f\|_L \le 1} E_P f(X) - E_{oldsymbol{Q}} f(\begin{subarray}{c} oldsymbol{Y} \end{pmatrix}. \ \|f\|_L \coloneqq \sup_{x
eq y} |f(x) - f(y)| / \|x - y\| \ W_1 = 0.65 \end{aligned}$$

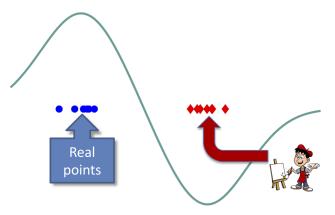


Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019) M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

A helpful critic witness:

$$MMD(P, {\color{red} Q}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_{{\color{red} Q}} f({\color{red} Y}).$$

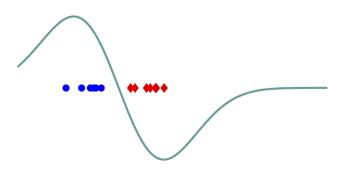
MMD=1.8



A helpful critic witness:

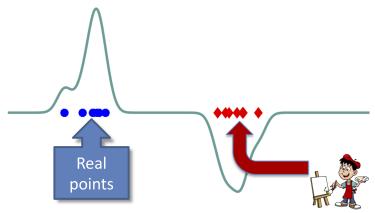
$$MMD(P, \ \ \ \ \ \ \ \) = \sup_{\|f\|_{\mathcal{F}} < 1} E_P f(X) - E_Q f(Y)$$

MMD=1.1



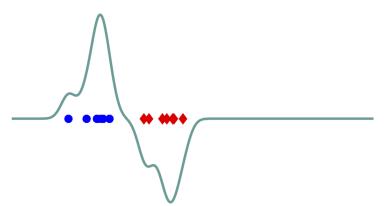
An unhelpful critic witness: MMD(P, Q) with a narrow kernel.

MMD=0.64



An unhelpful critic witness: MMD(P, Q) with a narrow kernel.

MMD=0.64



MMD as GAN critic

From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ Richard Zemel^{1,2}

YUJIALI@CS.TORONTO.EDU KSWERSKY@CS.TORONTO.EDU ZEMEL@CS.TORONTO.EDU

¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA
²Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge Daniel M. Roy University of Toronto Zoubin Ghahramani University of Cambridge

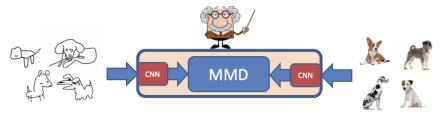
MMD as GAN critic



Need better image features.

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.



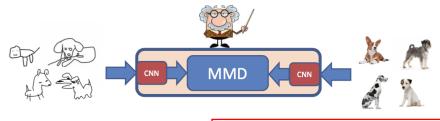
$$\mathfrak{K}(x,y) = h_{\psi}^{ op}(x)h_{\psi}(y)$$
 where $h_{\psi}(x)$ is a CNN map:

- Wasserstein GAN Arjovsky et al. [ICML 2017]
- WGAN-GP Gulrajani et al. [NeurIPS 2017]

$$\mathfrak{K}(x,y) = k(h_{\psi}(x),h_{\psi}(y))$$
 where $h_{\psi}(x)$ is a CNN map, k is e.g. an exponentiated quadratic kernel MMD Li et al., [NeurIPS 2017] Cramer Bellemare et al. [2017] Coulomb Unterthiner et al., [ICLR 2018] Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018]

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.



$$\mathfrak{K}(x,y) = h_{\psi}^{\top}(x)h_{\psi}(y)$$
 where $h_{\psi}(x)$ is a CNN map:

- Wasserstein GAN Arjovsky et al. [ICML 2017]
- WGAN-GP Gulrajani et al. [NeurIPS 2017]

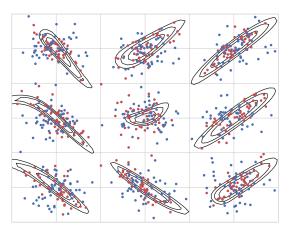
 $\Re(x,y) = k(h_{\psi}(x),h_{\psi}(y))$ where $h_{\psi}(x)$ is a CNN map, k is e.g. an exponentiated quadratic kernel MMD Li et al., [NeurIPS 2017] Cramer Bellemare et al. [2017] Coulomb Unterthiner et al., [ICLR 2018] Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018]

Reminder: kernel with deep learned features

Kernel with deep learned features:

$$k_{ heta}(x,y) = \left[(1-\epsilon) \kappa(\Phi_{ heta}(x),\Phi_{ heta}(y)) + \epsilon
ight] rac{oldsymbol{q}}{oldsymbol{q}}(x,y)$$

 κ and q are Gaussian kernels



Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful "gradient" to generator.

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful "gradient" to generator.

Relation with test power?

If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?

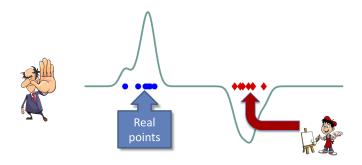
Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful "gradient" to generator.

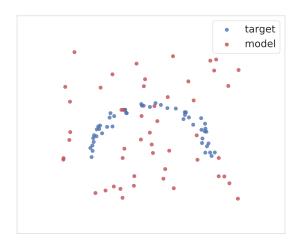
Relation with test power?

If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?



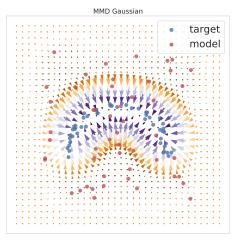
Simple 2-D example, fixed kernel

Samples from target P and model Q



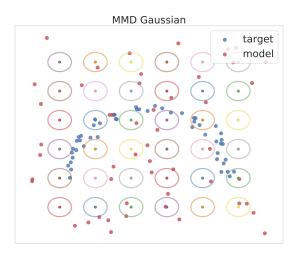
Simple 2-D example, fixed kernel

Witness gradient, MMD with exp. quad. kernel k(x, y)



Simple 2-D example, fixed kernel

What the kernels k(x, y) look like



Adaptive neural net features + kernels

Use kernels $k(h_{\psi}(x), h_{\psi}(y))$ with features

$$h_{\psi}(x) = L_3 \left(\left[egin{array}{c} x \ L_2(L_1(x)) \end{array}
ight]
ight)$$

where L_1, L_2, L_3 are fully connected with quadratic nonlinearity.

Adaptive neural net features + kernels

Witness gradient, maximize regularized $SMMD(P, \lambda)$ to learn $h_{\psi}(x)$ for $k(h_{\psi}(x), h_{\psi}(y))$

Adaptive neural net features + kernels

What the kenels $k(h_{\psi}(x), h_{\psi}(y))$ look like

isolines movie, use Acrobat Reader to play

A data-adaptive gradient penalty: NeurIPS 2018

- Gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel

Gatsby Computational Neuroscience Unit University College London michael.n.arbel@gmail.com

Mikołaj Bińkowski

Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland

Gatsby Computational Neuroscience Unit University College London dougal@gmail.com

Arthur Gretton

Gatsby Computational Neuroscience Unit University College London arthur.gretton@gmail.com

A data-adaptive gradient penalty: NeurIPS 2018

- Gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
- Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

$$SMMD(P, \lambda) = \sigma_{P,\lambda} MMD$$

where

$$\sigma_{P,\lambda}^2 = \lambda + \int rac{k(h_\psi(x),h_\psi(x))dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} rac{k}{k}(h_\psi(x),h_\psi(x)) \,\,dP(x)}{dP(x)}$$

Our empirical observations

Data-dependent gradient regularizer of critic

Similar regularization strategies apply in:

- WGAN-GP Gulrajani et al. [NeurIPS 2017]
- "Witness function" in f-GANs (next talk!) Roth et al [NeurIPS 2017, eq. 19 and 20]

Our empirical observations

Data-dependent gradient regularizer of critic

Similar regularization strategies apply in:

- WGAN-GP Gulrajani et al. [NeurIPS 2017]
- "Witness function" in f-GANs (next talk!) Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

- Weaker critics can give better signals to poor (early stage) generators.
- Incomplete training of the critic is also a regularisation strategy

Don't just use gradient regularizers!

Spectral norm regularizer (effectively smooths critic class; ICLR 2018):

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³ {miyato, kataoka}@preferred.jp koyama.masanori@gmail.com yyoshida@nii.ac.jp 'Preferred Networks. Inc. ²Ritsumeikan University ³National Institute of Informatics

Entropic regularizer (avoid mode collapse):

Evaluation and experiments

Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³ {miyato, kataoka}@preferred.jp

oyama masanori@gmail.com

i.ac.ip

works, Inc. 2Ritsumeikan University 3National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*

Department of Mathematics

Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit

College London michael.n.arbel,arthur.gretton}@gmail.com

SOBOLEV GAN

Youssef Mroueh[†], Chun-Liang Li^{◦,*}, Tom Sercu^{†,*}, Anant Raj^{⋄,*} & Yu Cheng[†] † IBM Research AI

o Carnegie Mellon University

O Max Planck Institute for Intelligent Systems

* denotes Equal Contribution

{mroueh, chengyu}@us.ibm.com, chunlial@cs.cmu.edu, tom.sercul@ibm.com,anant.raj@tuebingen.mpg.de

Yoshua Bengio

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hielm* Athul Paul Jacob* MILA. University of Montréal, IVADO erroneus@gmail.com

Tong Che

MILA. University of Montréal tong.che@umontreal.ca

Kyunghyun Cho New York University,

CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu

MILA, MSR. University of Waterloo apjacob@edu.uwaterloo.ca

Adam Trischler

adam.trischler@microsoft.com

MILA, University of Montréal, CIFAR, IVADO yoshua.bengio@umontreal.ca

Results: unconditional imagenet 64×64

KID scores:

- BGAN: 47
- SN-GAN:
- SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . 1000 classes.

Results: unconditional imagenet 64×64

KID scores:

- BGAN: 47
- SN-GAN:
- SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64×64 . 1000 classes.

Results: unconditional imagenet 64×64

KID scores:

- BGAN: 47
- SN-GAN:
- SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.



Summary

- GAN critics rely on two sources of regularisation
 - Regularisation by incomplete training
 - Data-dependent gradient regulariser
- Some advantages of hybrid kernel/neural features:
 - MMD loss still a valid critic when features not optimal (unlike WGAN-GP)
 - Kernel features do some of the "work", so simpler h_{ψ} features possible.

"Demystifying MMD GANs," including KID score, ICLR 2018:

https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:

https://github.com/MichaelArbel/Scaled-MMD-GAN

Linear vs nonlinear kenels

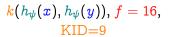
■ Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f convolutional filters in layers 1-4. LSUN 64×64 .

$$k(h_{\psi}(x),h_{\psi}(y)), f=64, \ ext{KID=3}$$

$$h_{\psi}^{\top}(x)h_{\psi}(y), f=64, ext{KID=4}$$

Linear vs nonlinear kenels

■ Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f convolutional filters in layers 1-4. LSUN 64×64 .



$$h_{\psi}^{\top}(x)h_{\psi}(y), f = 16, \text{ KID=37}$$

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

$$E_X \exp KL(P(y|X)||P(y)).$$

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

$$E_X \exp KL(P(y|X)||P(y)).$$

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P \Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

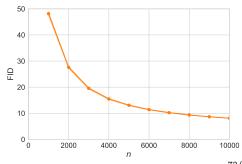
Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, Q) = \|\mu_P - \mu_Q\|^2 + \operatorname{tr}(\Sigma_P) + \operatorname{tr}(\Sigma_Q) - 2\operatorname{tr}\left((\Sigma_P\Sigma_Q)^{\frac{1}{2}}\right)$$

where μ_P and Σ_P are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

Bias demo,
 CIFAR-10 train vs
 test



The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

$$P_1 \sim \mathcal{N}(0, (1-m^{-1})^2) \qquad P_2 \sim \mathcal{N}(0, 1) \qquad {\color{red}Q} \sim \mathcal{N}(0, 1).$$

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

$$FID(\widehat{P_1}, Q) < FID(\widehat{P_2}, Q)$$

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

$$P_1 \sim \mathcal{N}(0, (1-m^{-1})^2)$$
 $P_2 \sim \mathcal{N}(0, 1)$ $Q \sim \mathcal{N}(0, 1)$.

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

$$FID(\widehat{P_1}, \overline{m{Q}}) < FID(\widehat{P_2}, \overline{m{Q}})$$

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

$$P_1 \sim \mathcal{N}(0, (1-m^{-1})^2)$$
 $P_2 \sim \mathcal{N}(0, 1)$ $Q \sim \mathcal{N}(0, 1)$.

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

$$FID(\widehat{P_1}, Q) < FID(\widehat{P_2}, Q)$$

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q.

Given two alternatives:

$$P_1 \sim \mathcal{N}(0, (1-m^{-1})^2)$$
 $P_2 \sim \mathcal{N}(0, 1)$ $Q \sim \mathcal{N}(0, 1)$.

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

$$FID(\widehat{P_1}, Q) < FID(\widehat{P_2}, Q).$$

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$$
 $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$

where $\Sigma = \frac{4}{d}CC^{T}$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, \mathbf{Q}) \approx 1123.0 > 1114.8 \approx FID(P_2, \mathbf{Q})$$

With m = 50000 samples,

$$FID(\widehat{P}_1, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P}_2, Q)$$

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \text{relu}(\mathcal{N}(0, I_d))$$
 $P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \text{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d}CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, \mathcal{Q}) pprox 1123.0 > 1114.8 pprox FID(P_2, \mathcal{Q})$$
 With $m=50\,000$ samples, $FID(\widehat{P_1}, \mathcal{Q}) pprox 1133.7 < 1136.2 pprox FID(\widehat{P_2}, \mathcal{Q})$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \text{relu}(\mathcal{N}(0, I_d))$$
 $P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \text{relu}(\mathcal{N}(1, I_d))$

where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, \mathbb{Q}) \approx 1123.0 > 1114.8 \approx FID(P_2, \mathbb{Q})$$

With m = 50000 samples,

$$FID(\widehat{P}_1, \mathbb{Q}) \approx 1133.7 < 1136.2 \approx FID(\widehat{P}_2, \mathbb{Q})$$

74/75

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice.

Let d = 2048, and define

$$P_1 = \text{relu}(\mathcal{N}(0, I_d))$$
 $P_2 = \text{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \text{relu}(\mathcal{N}(1, I_d))$

where $\Sigma = \frac{4}{d}CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

$$FID(P_1, \mathbb{Q}) \approx 1123.0 > 1114.8 \approx FID(P_2, \mathbb{Q})$$

With m = 50000 samples,

$$FID(\widehat{P_1}, \overline{Q}) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, \overline{Q})$$

At $m = 100\,000$ samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C.

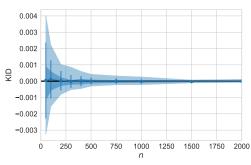
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



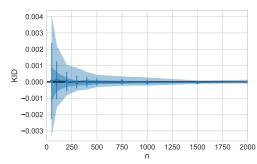
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



..."but isn't KID is computationally costly?"

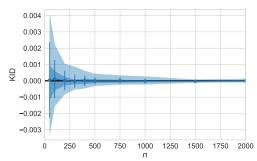
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



..."but isn't KID is computationally costly?"

"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

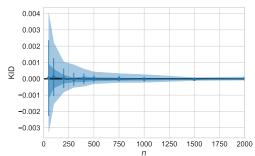
The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test



Also used for automatic learning rate adjustment: if $KID(\widehat{P}_{t+1}, \mathbb{Q})$ not significantly better than $KID(\widehat{P}_t, \mathbb{Q})$ then reduce learning rate.

[Bounliphone et al. ICLR 2016]