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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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A real-life example: two-sample tests
m Goal: do P and @ differ?

CIFAR 10 samples Cifar 10.1 samples
Significant difference?

Feng, Xu, Lu, Zhang, G., Sutherland, Learning Deep Kernels for Non-Parametric Two-Sample Tests,
ICML 2020

Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.
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Training generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @) that look like P
I

LSUN bedroom samples P Generated @, MMD GAN

Training a Generative Adversarial Network
(Binkowski, Sutherland, Arbel, G., ICLR 20185,

(Arbel, Sutherland, Binkowski, G., NeurIPS 2018) 4/75



A second task: dependence testing

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to

v follow his nose.
P -} Their noses guide them
” through life, and they're

never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
) your ear and follow you
everywhere.
5/75
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A third task: testing goodness of fit

m Given: A model P and samples Q.
m Goal: is P a good fit for Q7

Chicago crime data
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A third task: testing goodness of fit

m Given: A model P and samples Q.

m Goal: is P a good fit for Q7

Chicago crime data

Model is Gaussian mix-
ture with two compo-
nents. Is this a good
model?
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Outline

m Maximum Mean Discrepancy (MMD)...

...as a difference in feature means
...as an integral probability metric (not just a technicality!)

m A statistical test based on the MMD

learn adaptive NN features

m Training GANs generative adversarial networks with MMD
learn adaptive NN features

m Next parts:
¢-divergences for training GANS and Generalized Energy-Based
models,
Kernel dependence measures, Stein discrepancies for goodness-of-fit (if
time!)
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Divergence measures
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Divergences
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Divergences

\oxegﬁ‘ prob. metriq’

DH(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH
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The integral probability metrics

\oxegﬁ‘ prob. Metrj

wasserstein

DH(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH
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The ¢-divergences

Hellinger
KL

Dy(P,Q)
- [ o (B2 o

Pearson chi?
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Divergences

\o‘eg'd prob. metriQ’ &,d'\vergenceo

wasserstein

Hellinger
KL

Dy (P, Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH

Dy(P,Q)

- [ooe (3@) =

Pearson chi?

MMD
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Divergences

\‘\‘egrd prob. metl’iq'\ &,d‘wergencem

wasserstein

Hellinger
KL

D’H(P7 Q)

= sup [Ex~pg(X) — Eyqg(Y)
gEH

Dy(P,Q)

oo (55) o

Pearson chi?

MMD

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)
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The MMD



Feature mean difference

m Simple example: 2 Gaussians with different means
m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance
Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

2

Prob. density

x

<

o
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Feature mean difference

m Gaussian and Laplace distributions
m Same mean and same variance

m Difference in means using higher order features... RKHS

Gaussian and Laplace densities

0.7

o
)
T

Prob. density
o o o
L £ @

o
o
T

0.1F
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Infinitely many features using kernels

Kernels: dot products of
features

Feature map ¢(z) € F,

p(z)=1[..0iz).. ] €Ly

For positive definite k&,

k(z,z') = (p(z), o(z')) 7

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

K(z,2') = exp (—llz - /|

p(z) =

p1() /\

-V

T

aVAE

pa(z) |~

—T

T

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4.
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Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
pp = ... Belp(X)].. ]

19/75



Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
pp = ... Belp(X)].. ]

For positive definite k(z, z’),

(pp,po)Fr = Ep,ok(z,y)

forz ~ Pand y ~ Q.

Fine print: feature map ¢(z) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.

19/75



The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
=(up — K@, bP — Q) F
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — pollx
=(up — K@, bP — Q) F
={up,kp)r+ (L0, LQ)F — 2(kP, LQ) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — poll%
= (kP — 1, bP — Q) 5

= BEpk(X,X') + Bok(Y, Y') — 2Ep ok(X, Y)

(2) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Bach entry is one of k(dog,, dog;), k(dog;, fish;), or k(fish;, fish;)

Ll e
P -~

>

»?

-
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[Mustration of MMD

The maximum mean discrepancy:

—_—2
MMD Zn(n— Zk dog;,dog;) + (n—zk (fish;, fish;)
z;éj 1#]
- ﬁ > k(dog,, fish,)
]
LR
» < Ly

dog;, dog;;)

K(ish;. dog,) |

k(dog;, fish;)
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X)—Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X)—Eqf(Y)

Smooth function

0.5

-05 1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @
MMD(P, Q; F) = sup [Epf(X)—Bof(Y)]

17l 7<1
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) :=
171l 7<1

(F' = unit ball in RKHS F)

sup [Epf(X) - Eqf(Y)]

Functions are linear combinations of features:

bt

e fa
f@)=(fro@)r=>_ froelx)=| F,
(=1 .

2
1% = Z?ilfﬁ <1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := S [Epf(X) —Eof(Y)]
(F' = unit ba_ll in RKHS F)

Witness f for Gauss and Laplace densities
0.8 : : : : :

e
0.6r = Gauss |
m— |_aplace

Prob. density and f

Xot
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := S [Epf(X) —Eof(Y)]
(F' = unit ba_ll in RKHS F)

For characteristic RKHS F, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)

m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002]

25/75



MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := Hfsilup<1 [Epf(X) —Eqf(Y)]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations of
expected features

Ep(f(X)) = (/,Ero(X))x = {f, kP) £

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
IIF11<1

Smooth function

0 0.2 0.4 0.6 0.8 1
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Integral prob. metric vs feature mean difference

The MMD:

use
MMD(P, Q; F)

— H?ng [Epf(X) - BEof(Y)] Epf(X) = (ur,f)r

= sup (f,pup — LQ)r
I7ll<1
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Integral prob. metric vs feature mean difference

The MMD:
\
&
MMD ; ~
(P7 Q’ F)
= sup [Epf(X)—-Eqf(Y)]
IIF1I<1

= sup (f,pup — LQ)r
I7lI<1

26/75



Integral prob. metric vs feature mean difference

The MMD: / \}>Q‘
(.\\@a“ o
MMD(P, Q; F) > f
= sup [Epf(X)—-Eqf(Y)]
If[1<1

= sup (f,pup — LQ)r
I7lI<1
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Integral prob. metric vs feature mean difference

The MMD: / \)'OJ
MMD(P, Q; F) .
= sup [Epf(X)—Eqf(Y)] f*
IF1[<1
= sup (f,up — ko)
IFI<1
. P —Hg

~ lup — uoll
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Integral prob. metric vs feature mean difference

The MMD:
MMD(P, Q; F)
= sup [Epf(X)—Eqf(Y)]
If1I<1
= sup (f,up — Q) x
IIF11<1
= |lup — poll£

IPM view equivalent to feature mean
difference (kernel case only)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {x3,...,X,} ~ P

@Obscwc Y({yl, ey Yt~ Q
o @e ( K‘.
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — Vv
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)

27/75



Derivation of empirical witness function

Recall the witness function expression

frocpup —po
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
The empirical feature mean for P

1 n
B =7 3ol
1=

28/75



Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
1 n
B =3 D v()
1=

The empirical witness function at v

()= e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
1 n
B =3 D v()
1=

The empirical witness function at v

o (P — Lo, 9(v) £
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
1 n
e = (@)
1=1
The empirical witness function at v

)= (" e(v)#
x (hp — 1o, (V) £

n

D S O S v
- nz:l (3] n1:1 YZJ

Don’t need explicit feature coefficients f* := [ fi* f5

]

28/75



Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—2
MMD =——— YCRY > k(i) Zk (v, 75)
z;éj 1-75]

4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— YCRY > k(i)
z;ﬁj

4]

Perspective from statistical hypothesis testing:

m Null hypothesis Ho when P = Q

should see mz “close to zero”.
m Alternative hypothesis H; when P # Q

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD == S k(zi, ) Zk (v:,75)
z;éj 1-75]

4]

Perspective from statistical hypothesis testing:

m Null hypothesis Ho when P = Q

should see mz “close to zero”.
m Alternative hypothesis H; when P # Q

2
should see MMD “far from zero”

—2
Want Threshold ¢, for MMD to get false positive rate a

30/75



—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
Laplace with different y-variance.

/\2
nx MMD =1.2

— 9
Vn x MMD™ =1.2

10

31/75



—_— 2
Behaviour of MMD when P # @

Draw n = 200 i.i.d samples from P and Q
m Laplace with different y-variance.

/\2
B /nx MMD =12

10

— 2
MMD =1.2
Number of MMDs: 1 wﬁx —

~
T

2
(2]
T

Prob. of /i x MMD’
~ )

w
T

n
T

0 0.5 1 1.5 , 2
Vi x MMD

25

32/75



. —— s 2
Behaviour of MMD when P # @
Draw n = 200 new samples from P and @
m Laplace with different y-variance.

/\2
B /nx MMD =15

— 2
nx MMD =1.5
Number of MMDs: 2 }0/_ ‘ :
4 : ‘ : : :
. |
-~ .l' .
~ 4 o ... °, . 4
S . ...
g A ey
=~ .0_‘ |
X 0 W e ¥
§ 2 :' .:“5.‘-’.. "
a ".-.:‘:"I.'.
C? 4 '.-a .
5 .
& ® ’
-8
10 ‘
2 0 2

0 0.5 1 1.5 y 2 25
/i x MMD 33/75



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

Number of MMDs: 150

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
—— 9
Vi x MMD
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—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

Number of MMDs: 300

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
—— 9
Vi x MMD

34/75



—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...
Number of MMDs: 3000

—

Prob. of \/n x MMD

0 0.5 1 15 2 25
—— 2
Vi x MMD

34/75



— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD  — MMD?(P, Q) »p

— N(0,1),
3 _ -1
where variance V,(P, Q)= O (n7!) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
I Erpirical PDF —%
e Giaussian fit =
5 ﬂg)
(= 5
= 2.,
X
e 6 4 2 0 2 4 6
. 05 X
e}
2
s}y
0

0 05 1 15 2 25 3 35
—_— 2
nx MMD
Vi 35/75



—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?

36/75



—_—2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4

0.3

0.2

0.1

37/75



—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

J—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

J—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 1000

J—

Prob. of n x MM D

37/75



—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

o0
nl\m2 ~ Z Wy [zlz — 2]

=1
) where
MMD density under H,
‘ : ‘ Az ::u/p E(z, 2')i(2)dP(z
o | AE) = [ Hes)@)dPe)
™ ’ -Empirical PDF centred

Prob. of n x MM D
o
~

2 ~N(0,2) iid.

o
o

n x MID
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A statistical test

A summary of the asymptotics:

0.7 T

2

Prob. of n x MMD
& 2 &

o
n
T

0.1
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—P=Q
06 . — P ?é Q|
(2
Q o5 i
= 04| .
X
<
G 03F 8
a ¢ = 1 — a quantile when P = @
o
& oo2f 1
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?
Original empirical MMD for dogs and fish:

X =[P ™ P ... ]
Y =2, M ... |

40/75



How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
X = [@) Tmi gyl ]

Y = [Paed ]

41/75



How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

= [ Mot I
MMD" = an =T Zk
1751
(n— 1 Z k(
17&1

- ﬁZk(i 7
]

Permutation simulates

P=Q

X =12 "matt ..
%

i

e Ll | Ll -l CEE B
rIII 11




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

X = [ mat ]
V= [l W]

Exact level a (upper bound
on false positive rate)

at finite 7 and number of
permutations

(when unpermuted statistic
included in pool)

Proposition 1, Schrab, Kim, Albert, Lau-
rent, Guedj, Gretton (2021), MMD Aggre-

gated Two-Sample Test, arXiv:2110.15073




How to choose the best kernel:
optimising the kernel parameters



The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!

4375



The best test for the job

m A test’s power depends on k(z,z'), P, and @ (and n)

m With characteristic kernel, MMD test has power — 1 as n — oo for
any (fixed) problem

But, for many P and @, will have terrible power with reasonable n!
®m You can choose a good kernel for a given problem

m You can’t get one kernel that has good finite-sample power for all
problems

“No one test can have all that power”

4375



Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

0.5

f(x)

-0.51
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

05
X o0 ®e = mans e

-0.51
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

0.5

f(x)

-0.51
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
® ...and some problems (e.g. images) might have no good choice for ¢

44/75



Graphical illustration

® Maximising test power same as minimizing false negatives

0.7

0.6

2

Prob. of n x MMD
a 2 &

o
o

0.1

false negatives

—P=Q
—P+#Q

¢o = 1 — a quantile when P = @

45/75



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pry (nMMD > aa>
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

PI']_ <n1\m2 > &a>
s (MMD2(P, Q) c )

VVa(P, Q)  ny/Va(P,Q)

where

m ® is the CDF of the standard normal distribution.

m ¢, 1s an estimate of c, test threshold.

46/75



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Pr1 nMMD >ca)

MMD?(P, Q) Ca
\/ 2(P,Q) nJVu(P,Q)
1/2 O(nil/z)

For large n, second term negligible!

46/75



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Prq (nl\fl\-/IT:)2 > c":a>
2
s (MMD (P, Q) c )

VVa(P, Q) 1y Va(P,Q)

To maximize test power, maximize

MMD?(P, Q)
Vu(P, Q)

46/75



Data splitting

Choose a kernel k

maximizing \/A%
Use chosen k& for MMD test

47/75



Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

48/75



Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®o(z), 26(y)) + €] o(z, y)
k and ¢ are Gaussian kernels
m CIFAR-10 vs CIFAR—lO 1 null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)  CIFAR-10.1 (Recht+ ICML 2019)
X ~P Y ~Q

48/75



Learning a kernel helps a lot

Kernel with deep learned features:
ke(z,y) = [(1 — €)rx(®o(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning
(Submitted on 21 Feb 2020}

Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

ICML 2020
Code: https://github.com/fengliu90/DK-for-TST

48/75


https://github.com/fengliu90/DK-for-TST

Adaptive testing without data splitting?
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Adaptive testing without data splitting?

ar <1V > stat > arXiv:2110.15073

Statistics > Machine Learning
[Submitted on 28 Oct 2021]

MMD Aggregated Two-Sample Test

Antonin Schrab, llmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton

Code: https://github.com/antoninschrab/mmdagg-paper

49/75


https://github.com/antoninschrab/mmdagg-paper

MMD for GAN training



Training implicit generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @) that look like P
I

| 1= = J . .
e 08

LSUN bedroom samples P Generated @, MMD GAN
Using a critic D(P, @) to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 20185, B
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018) 51/75



Visual notation: GAN setting

52/75



What I won’t cover yet: the generator

Project and reshape

Radford, Metz, Chintala, ICLR 2016

Stride 2 16

CONV 2

53/75



Wasserstein distance as critic

. A helpful critic witness:
@@/ Wi(P, Q) = sups,<1 Brf(X) — Bqf(Y).
f1z = supgy If(z) — f(¥)| /llz — vl
W1=0.88
o ome (X 24,4

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017) 54/75
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@@/ Wi(P, Q) = sups,<1 Brf(X) — Bqf(Y).
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G Peyré, M Cuturi, Computational Optimal Transport (2019)
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MMD as critic

> A helpful critic witness:
MMD(P, Q) = supy| <1 Brf(X) — Eqf(Y).

MMD=1.8
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MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64
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MMD as GAN critic

From ICML 2015:

Generative Moment Matching Networks

Yujia Li! YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge
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MMD as GAN critic

7107124/

HEFICIFEIR
6 4/723

Need better image features.
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CNN features for IPM witness functions

m Add convolutional features!

m The critic (teacher) also needs to be trained.

WY

W«d«

f(z,y) = hy " (2)hy(v)
where hy(z)

m Wasserstein GAN Arjovsky
et al. [ICML 2017]

s WGAN-GP Gulrajani et al.
[NeurIPS 2017]

is a CNN map:

R(z,y) = k(hy(z), hnp(y))
where hy(z) is a CNN map,
k ise.g. an exponentiated quadratic

kernel

MMD Li et al., [NeurIPS 2017]

Cramer Bellemare et al. [2017]
Coulomb Unterthiner et al., [[CLR 2018]
Demystifying MMD GANS Binkowski,
Sutherland, Arbel, G., [ICLR 2018] 57,75



CNN features for IPM witness functions

m Add convolutional features!

m The critic (teacher) also needs to be trained.

WY

W«d«

f(z,y) = hy " () g (v)
where hy(z) is a CNN map:

m Wasserstein GAN Arjovsky et al.

[ICML 2017]

s WGAN-GP Gulrajani et al.
[NeurIPS 2017]

R(z,y) = k(hy(z), h¢(y))
where hy(z) is a CNN map,
k is e.g. an exponentiated quadratic

kernel

MMD Li et al., [NeurIPS 2017]

Cramer Bellemare et al. [2017]

Coulomb Unterthiner et al., [I[CLR 2018
Demystifying MMD GANS Binkowski,
Sutherland, Arbel, G., [ICLR 2018] 5875




Reminder: kernel with deep learned features

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

59/75



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful “gradient” to
generator.
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Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?
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Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful “gradient” to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?

Real
points
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Simple 2-D example, fized kernel

Samples from target P and model @
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e model
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Simple 2-D example, fized kernel

Witness gradient, MMD with exp. quad. kernel k(z, y)

MMD Gaussian
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Simple 2-D example, fized kernel

What the kernels k(z, y) look like

MMD Gaussian

¢ . « target
. » model
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Adaptive neural net features + kernels

Use kernels k(hy(z), hy(y)) with features

hy(z) = Ls <[ LQ(L:Ii(z)) D

where Ly, La, L3 are fully connected with quadratic nonlinearity.
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Adaptive neural net features + kernels

Witness gradient, maximize regularized SMMD(P, ))
to learn hy(z) for k(hy(z), hy(y))

vector field movie, use Acrobat Reader to play
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Adaptive neural net features + kernels

What the kenels %(hy(z), hy(y)) look like

isolines movie, use Acrobat Reader to play
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A data-adaptive gradient penalty: NeurIPS 2018

m Gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Dougal J. Sutherland
Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit
University College London University College London
michael.n.arbel@gmail.com dougal@gmail.com
Mikotaj Bifikowski Arthur Gretton
Department of Mathematics Gatsby Computational Neuroscience Unit
Imperial College London University College London
mikbinkowski@gmail.com arthur.gretton@gmail.com
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A data-adaptive gradient penalty: NeurIPS 2018

m Gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

SMMD(P,)) = op MMD

d

oba= )\+/k(%(w),h¢($))dP(93)+Z/8¢6¢+dk(h¢($),h¢($)) dpP(z)

1=1
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Our empirical observations

Data-dependent gradient regularizer of critic

Similar regularization strategies apply in:
B WGAN-GP CGulrajani et al. [NeurIPS 2017]

m “Witness function” in f-GANs (next talk!) Roth et al [NeurIPS 2017, eq. 19
and 20]
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Our empirical observations

Data-dependent gradient regularizer of critic

Similar regularization strategies apply in:
B WGAN-GP CGulrajani et al. [NeurIPS 2017]

m “Witness function” in -GANs (next talk!) Roth et al [NeurIPS 2017, eq. 19
and 20]

Alternate critic and generator training:

m Weaker critics can give better signals to poor (early stage) generators.

m Incomplete training of the critic is also a regularisation strategy
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Don’t just use gradient regularizers!

Spectral norm regularizer (effectively smooths critic class; ICLR 2018):

SPECTRAL NORMALIZATION

FOR GENERATIVE ADVERSARIAL NETWORKS
Takeru Miyato', Toshiki Kataoka', Masanori Koyama?, Yuichi Yoshida®
{miyato, kataoka}@preferred.ip
koyama.masanori@gmail.com

yyoshida@nii.ac. jp
IPreferred Networks, Inc. 2Ritsumeikan University *National Institute of Informatics

Entropic regularizer (avoid mode collapse):

arXiv.org > stat > arXiv:1910.04302

Statistics > Machine Learning
[Submitted on 9 Oct 2019}

Prescribed Generative Adversarial Networks
Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei, Michalis K. Titsias
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Evaluation and experiments
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Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION
FOR GENERATIVE ADVERSARIAL NETWORKS

‘Takeru Miyato', Toshiki Kataoka

, Masanori Koyama®, Yuichi Yoshida®
[miyato, katacka}l@preferred.ip
gsanorifgmail.com

orks, Inc. *Ritsumeikan University *National Institute of Informatics

DEMYSTIFYING MMD GANS

Mikolaj Bisikowski®
Department of Mathematics
Imperial College London

mikbinkowskilgmal

com

Dougal J. Sutherland; Michael Arbel & Arthur Gretton
omputional Neusoscience Uit

London
+michael.n.arbel,arthur.gretton}@gmail.com

SOBOLEV GAN

Youssef Mroueh', ,Chon-Lisng L *, Tom Sercu’*, Anant Raj°* & Yu Cheng'
+ IBM Rescarch A

o Carnegie Mellon Um

¢ Max Planck Institute for Inlcltignnl Systems

+ denoles Equal Contribution

{mroueh, chengyu}@us. ibm.com, chunlial@es.cmu.edy,
ton.sercul @ibm. com, anant . rajétuebingen. mpg. de

BOUNDARY-SEEKING
GENERATIVE ADVERSARIAL NETWORKS
R Devan H

MILA, University of Montréal, IVADO
erroneusdgrall.com

Athul Paul Jacab’

MILA, MSR, University of Waterloo

apjacobledu. uwaterloo.ca

Tong Che
MILA, University of Moatréal
tong.chefunontreal.ca

Kynghyun Cho

New York University,
CIFAR Azrieli Global Scholar
Xkyunghyun. cho@nyu. edu

Yoshua Beaglo
MILA, University of Monteéal, CIFAR, IVADO
yoshua.bangiofumont real .ca
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Results: unconditional imagenet 64 x 64

KID scores:

m BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 X 64. 1000
classes.
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Results: unconditional imagenet 64 x 64

KID scores:

m BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 X 64. 1000
classes.




Summary

B GAN critics rely on two sources of regularisation

Regularisation by incomplete training
Data-dependent gradient regulariser

m Some advantages of hybrid kernel/neural features:

MMD loss still a valid critic when features not optimal (unlike
WGAN-GP)

Kernel features do some of the “work”, so simpler hy features possible.

“Demystifying MMD GANSs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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https://github.com/mbinkowski/MMD-GAN
https://github.com/MichaelArbel/Scaled-MMD-GAN 

Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

hy ' (z)hy(y), f = 64, KID=4
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Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

\5,& I IR | 4 ”&ew

F(hy(), hy(y)), f = 16, hy T(2)hy(y), f = 16, KID=37
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Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:ezeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y)).
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

71/75



Evaluation of GANs

The lnceptlon SCOI'e? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:czeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[| P(y))-
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs

The P‘rechet 1ncept10n dlStance7 Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |lup — moll* +x(Zp) + tx(Z0) - 2tr (Bp20)? )

where up and X p are the feature mean and covariance of P
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Evaluation of GANs

The P‘rechet 1ncept10n dlStance7 Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |lup — moll* +x(Zp) + tx(Z0) - 2tr (Bp20)? )

where up and X p are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.

m Bias demo,
CIFAR-10 train vs
test

50

40

30

FID

20

0 2000 4000 6000 8000
n

10000

72/75



Evaluation of GANs

The FID can give the wrong answer in theory.
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).

Clearly,
1
FID(P1, Q) = poos > FID(P,, Q) =0

Given m samples from P; and P,

FID(Py, Q) < FID(P,, Q).
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Evaluation of GANs

The FID can give the wrong answer in practice.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P =relu(N(1,.85+.21y)) Q = relu(N (1, Iy))

where X = %CCT, with C a d x d matrix with iid standard normal
entries.
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Let d = 2048, and define

Py =relu(N(0, I3)) P =relu(N(1,.85+.21y)) Q = relu(N (1, Iy))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 &~ FID(P,, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P;, Q)
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P =relu(N(1,.85+.21y)) Q = relu(N (1, Iy))

where X = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 &~ FID(P,, Q)
With m = 50000 samples,
FID(Py, Q) ~ 1133.7 < 1136.2 & FID(P;, Q)

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C. 74/75



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [[CLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004
0.003
k(z,y) = (1:1:Ty + 1)3 . o
! d 0.001

0.000

KID

m Checks match for feature
means, variances, skewness

-0.001

-0.002
m Unbiased : eg CIFAR-10 -0.003

] 0 250 500 750 1000 1250 1500 1750 2000
train/test .
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [I[CLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003
1 + 3 0.002
k(z,y) = 2% Y +1) . o001

0.000

m Checks match for feature
means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003

train /test 0 250 500 750 1(:;)0 1250 1500 1750 2000

.“but isn’t KID is computationally costly?”
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003

1 T 3 0.002

k(a:’ y) - Em v+ ! . q 0001

m Checks match for feature - _Zzz:)

means, variances, skewness _0:002

m Unbiased : eg CIFAR-10 -0.003
train /test 0 250 500 750 1000 1250 1500 1750 2000

...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper

(or use Tensorflow implementation)!
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004
0.003
1 T 3 0.002
k(tL’, y) = (dm y+ 1) : 0.001

0.000

m Checks match for feature
means, variances, skewness

-0.001

-0.002

m Unbiased : eg CIFAR-10 -0.003

1 0 250 500 750 1000 1250 1500 1750 2000
train/test .

Also used for automatic learning rate adjustment: if KID(]?’tH, Q)
not significantly better than KID(Py, Q) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [7215%1{(75,
June 2018]



