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Training generative models
Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using a critic D(P ;Q) to train a model
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Outline

�-divergences (f -divergences) and critics functions derived from them

Generalized energy-based models

Arbel, Zhou, G., Generalized Energy Based Models (arXiv 2020)̄

Integral probability metrics as GAN critics, gradient regularization
(if time)

Binkowski, Sutherland, Arbel, G., Demystifying MMD GANs (ICLR 2018)̄;
Arbel, Sutherland, Binkowski, G., On Gradient Regularizers for MMD GANs
(NeurIPS 2018)̄
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Divergence measures
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Divergences
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Divergences
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The �-divergences
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The �-divergences
Define the �-divergence(f -divergence):

D�(P ;Q) =

Z
�

�
p(z )
q(z )

�
q(z )dz

where � is convex, lower-semicontinuous, �(1) = 0.

Example: �(u) = u log(u) gives KL divergence,

DKL(P ;Q) =

Z
log

�
p(z )
q(z )

�
p(z )dz

=

Z �
p(z )
q(z )

�
log

�
p(z )
q(z )

�
q(z )dz
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Are �-divergences good critics?
Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

DKL(P ;Q) =1 DJS (P ;Q) = log 2
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A variational lower bound
A lower-bound �-divergence approximation:

D�(P ;Q) =

Z
q(z )�

�
p(z )
q(z )

�
dz

� sup
f 2H

EP f (X )�EQ�
� (f (Y ))

(restrict the function class)

��(u) is dual of �(u):

Bound tight when:

f �(z ) = @�

�
p(z )
q(z )

�

if ratio defined.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016) 10/29
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Case of the KL

DKL(P ;Q) =

Z
log

�
p(z )
q(z )

�
p(z )dz

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Case of the KL

DKL(P ;Q) =

Z
log

�
p(z )
q(z )

�
p(z )dz

� sup
f 2H

�EP f (X ) + 1�EQexp (�f (Y ))| {z }
��(�f (Y )+1)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Case of the KL

DKL(P ;Q) =

Z
log

�
p(z )
q(z )

�
p(z )dz

� sup
f 2H

�EP f (X ) + 1�EQ exp (�f (Y ))

� sup
f 2H

2
4� 1

n

nX
j=1

f (xi )�
1
n

nX
i=1

exp(�f (yi ))

3
5+ 1

xi
i:i:d:
� P

yi
i:i:d:
� Q

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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This is a
KL
Approximate
Lower-bound
Estimator.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Case of the KL
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n
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j=1
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1
n
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exp(�f (yi ))

3
5+ 1

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Topological properties of KALE (1)
Key requirements on H and X :

Compact domain X ,
H dense in the space C (X ) of continuous functions on X wrt k � k1.
If f 2 H then �f 2 H and cf 2 H for 0 � c � Cmax.

Theorem: KALE(P ;Q ;H) � 0 and KALE(P ;Q ;H) = 0 iff P = Q .

H dense in C (X ) for X � Rd when:

H = spanf�(w>x + b) : [w ; b] 2 �g

�(u) = maxfu ; 0g�; � 2 N, and f�� : � � 0; � 2 �g = R
d+1.

Zhang, Liu, Zhou, Xu, and He. “On the Discrimination-Generalization Tradeoff in GANs”

(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (arXiv 2020, Proposition 1)
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Topological properties of KALE (2)
Additional requirement: all functions in H Lipschitz in their inputs
with constant L

Theorem: KALE(P ;Qn ;H)! 0 iff Qn ! P under the weak
topology.

Partial proof idea:

KALE(P ;Q ;H) =�

Z
f dP �

Z
exp(�f )dQ + 1

=

Z
f (x )dQ(x )� f (x 0)dP(x 0)

�

Z
(exp(�f ) + f � 1)| {z }

�0

dQ

�

Z
f (x )dQ(x )� f (x 0)dP(x 0) � LW1(P ;Q)

Liu, Bousquet, Chaudhuri. “Approximation and Convergence Properties of Generative

Adversarial Learning” (NeurIPS 2017); Arbel, Liang, G. (arXiv 2020, Proposition 1)
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Empirical properties of KALE

KALE(P ;Q ;H) = sup
f 2H

�EP f (X )� EQ exp (�f (Y )) + 1

f = hw ; �(x )iH H anRKHS

kwk2H penalized :

KALE smoothie

KALE(Q ;P ;H)=0.12
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The KALE smoothie and “mode collapse”
Two Gaussians with same means, different variance

“Mode collapse”

Example thanks to M. Arbel and M. Rosca
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Generalized Energy-Based Models
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Visual notation: GAN setting
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Visual notation: GAN setting

generate
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Reminder: the generator
Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

Radford, Metz, Chintala, ICLR 2016

18/29



Generalized energy-based models
Define a model QB�;E as follows:

Sample from generator with parameters �

X � Q� () X = B�(Z ); Z � �

Reweight the samples according to importance weights:

fQ ;E (x ) =
exp(�E(x ))

ZQ�;E
; ZQ ;E =

Z
exp(�E(x ))dQ�(x );

where E 2 E ; the energy function class.
fQ;E (x ) is Radon-Nikodym derivative of QB� ;E wrt Q�.

When Q� has density wrt Lebesgue on X , this is a standard
energy-based model.
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Generalized Energy-Based Models
Fit the model using Generalized Log-Likelihood:

LP ;Q(E) :=

Z
log(fQ ;E )dP = �

Z
EdP � logZQ ;E

When KL(P ;Q�) well defined, above is Donsker-Varadhan lower
bound on KL

� tight when E(z ) = � log(p(z )=q(z )):
However, Generalized Log-Likelihood still defined when P and Q�

mutually singular!

https://github.com/MichaelArbel/GeneralizedEBM 20/29

https://github.com/MichaelArbel/GeneralizedEBM


Generalized energy-based models: illustration
Support of target distribution P

Example thanks to M. Arbel
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Generalized energy-based models: illustration
Mass of target distribution P

Example thanks to M. Arbel
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Generalized energy-based models: illustration
Mass of base (generator) distribution Q�

Example thanks to M. Arbel
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Generalized energy-based models: illustration
Mass of GEBM corrected by critic

Example thanks to M. Arbel
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Learning the energy function
Fit the model using Generalized Log-Likelihood:

LP ;Q(E) :=

Z
log(fQ ;E )dP = �

Z
EdP � logZQ ;E

From concavity of logarithm,

� log(ZQ ;E ) � �c � exp(�c)ZQ ;E + 1

tight whenever c = log(ZQ ;E ).

Generalized Log-Likelihood has the lower bound:

LP ;Q(E) � �

Z
(E + c)dP �

Z
exp(�(E + c))dQ� + 1

:= F(P ;Q�; E + R)

Jointly maximizing yields the maximum likelihood energy E� and
corresponding c� = log(ZQ ;E�).
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Learning the base measure (generator)
Recall the generator:

X = B�(Z ); Z � �

Define: K(�) := F(P ;Q�; E + R)

Theorem: K is lipschitz and differentiable for almost all � 2 � with:

rK(�) = Z�1
Q ;E�

Z
rxE�(B�(z ))r�B�(z ) exp(�E�(B�(z )))�(z )dz :

where E� achieves supremum in F(P ;Q ; E + R).

Assumptions:
Functions in E parametrized by  2 	, where 	 compact,

� jointly continous w.r.t. ( ; x ), L-lipschitz and L-smooth w.r.t. x .
(�; z ) 7! B�(z ) jointly continuous wrt (�; z ), z 7! B�(z ) uniformly
Lipschitz w.r.t. z , lipschitz and smooth wrt � (see paper: constants
depend on z )
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Sampling from the model
Consider end-to-end model QB�;E , where recall that
X = B�(Z ); Z � �,

fB ;E (x ) :=
exp(�E(x ))

ZQ ;E

For a test function g ,

Z
g(x )dQB ;E (x ) =

Z
g(B(z ))fB ;E (B(z ))�(z )dz

Posterior latent distribution therefore

�B ;E (z ) = �(z )fB ;E (B(z ))

Sample z � �B ;E via Langevin diffusion-derived algorithms (MALA,
ULA, HMC,...) to exploit gradient information.
Generate new samples in X via

X � QB ;E () Z � �B ;E ; X = B�(Z ):
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Examples: sampling at modes
Tempered GEBM Cifar10 samples at different stages of sampling
using Langevin. Early samples ! late samples.
Model run at low temperature (� = 100) for better quality samples.

For a given generator and critic architecture, samples always
better (FID score) than generator alone.
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Examples: moving between modes

Tempered GEBM Cifar10 samples at different stages of sampling
using Langevin. Early samples ! late samples.
Model run at higher temperature (� = 1) for mode exploration.
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Summary

Generalized energy based model:
� End-to-end model incorporating generator and critic
� Always better samples than generator alone.

GAN critics rely on two sources of regularisation:
� Regularisation by incomplete training
� Data-dependent gradient regulariser

Demystifying MMD GANs, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN

Generalized Energy-Based Models, arXiv 2020:
https://github.com/MichaelArbel/GeneralizedEBM
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Questions?

28/29



Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel
Gatsby Computational Neuroscience Unit
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Abstract

We construct a Wasserstein gradient flow of the maximum mean discrepancy
(MMD) and study its convergence properties. The MMD is an integral probability
metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a
metric on probability measures for a sufficiently rich RKHS. We obtain conditions
for convergence of the gradient flow towards a global optimum, that can be related
to particle transport when optimizing neural networks. We also propose a way to
regularize this MMD flow, based on an injection of noise in the gradient. This
algorithmic fix comes with theoretical and empirical evidence. The practical
implementation of the flow is straightforward, since both the MMD and its gradient
have simple closed-form expressions, which can be easily estimated with samples.

1 Introduction

We address the problem of defining a gradient flow on the space of probability distributions endowed
with the Wasserstein metric, which transports probability mass from a starting distribtion ⌫ to a target
distribution µ. Our flow is defined on the maximum mean discrepancy (MMD) [21], an integral
probability metric [40] which uses the unit ball in a characteristic RKHS [53] as its witness function
class. Specifically, we choose the function in the witness class that has the largest difference in
expectation under ⌫ and µ: this difference constitutes the MMD. The idea of descending a gradient
flow over the space of distributions can be traced back to the seminal work of [27], who revealed
that the Fokker-Planck equation is a gradient flow of the Kullback-Leibler divergence. Its time-
discretization leads to the celebrated Langevin Monte Carlo algorithm, which comes with strong
convergence guarantees (see [16, 17]), but requires the knowledge of an analytical form of the target
µ. A more recent gradient flow approach, Stein Variational Gradient Descent (SVGD) [36], also
leverages this analytical µ.

The study of particle flows defined on the MMD relates to two important topics in modern machine
learning. The first is in training Implicit Generative Models, notably generative adversarial networks
[20]. Integral probability metrics have been used extensively as critic functions in this setting: these
include the Wasserstein distance [3, 19, 24] and maximum mean discrepancy [2, 4, 6, 18, 32, 34]. In
[39, Section 3.3], a connection between IGMs and particle transport is proposed, where it is shown
that gradient flow on the witness function of an integral probability metric takes a similar form to the
generator update in a GAN. The critic IPM in this case is the Kernel Sobolev Discrepancy (KSD),
which has an additional gradient norm constraint on the witness function compared with the MMD. It
is intended as an approximation to the negative Sobolev distance from the optimal transport literature
[42, 43, 56]. There remain certain differences between gradient flow and GAN training, however.
First, and most obviously, gradient flow can be approximated by representing ⌫ as a set of particles,
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