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Observation vs intervention
Conditioning from observation: E(Y jA = a) =

P
x E(Y ja ; x )p(x ja)Hidden context observed

X

A Y

8/9

or

or

From our observations of historical hospital data:

P(Y = curedjA = pills) = 0:80
P(Y = curedjA = surgery) = 0:72

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality
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Observation vs intervention
Average causal effect (intervention): E(Y (a)) =

P
x E(Y ja ; x )p(x )

Hidden context observed, do(a), SWIG

X

A

a
Y a

9/9

or

or

From our intervention (making all patients take a treatment):

P(Y = curedjdo(pills)) = 0:64
P(Y = curedjdo(surgery)) = 0:75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality 2/37



Questions we will solve

X

A

a
Y (a)
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Outline
Talk structure:
Average treatment effect (ATE)

� ...via kernel mean embedding (marginalization)
Conditional average treatment effect (CATE)

� via kernel conditional mean embedding
Proxy methods

� ...when covariates are hidden
� ...causal representation learning via neural conditional mean

embedding

Advantages of the approach:

Treatment A, covariates X , etc can be multivariate, complicated...
Simple, robust implementation;
Strong statistical guarantees under general smoothness assumptions
(kernel)

Works for kernel or adaptive neural net features!
4/37



Key requirement: linear functions of features
All learned functions will take the form:


̂(x ) = 
̂>'(x ) = h
̂; '(x )iH
Option 1: Finite dictionaries of learned neural net features (linear
final layer)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded
Bandit Policy Evaluation”. (NeurIPS 21)
Xu, G., “A Neural mean embedding approach for back-door and front-door adjustment
(ICLR23)

Option 2: Infinite dictionaries of fixed kernel features:

h'(xi ); '(x )iH = k(xi ; x )

Kernel is feature dot product.
Mastouri*, Zhu*, Gultchin, Korba, Silva, Kusner, G,y Muandety (2021); Proximal Causal
Learning with Kernels: Two-Stage Estimation and Moment Restrictionb (ICML21)
Singh, Xu, G, (2022a) Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves (Biometrika, in revision) 5/37



Key building block: ridge regression
Learn 
0(x ) := E[Y jX = x ] from features '(xi ) with outcomes yi :


̂ = argmin

2H

 nX
i=1

(yi � h
; '(xi )iH)
2 + �k
k2H

!
:

Kernel as feature dot product:

h'(xi ); '(x )iH = k(xi ; x )

Solution at x (as weighted sum of y)


̂(x ) =
nX

i=1

yi�i (x )

�(x ) = (KXX + �I )�1kXx

(KXX )ij = k(xi ; xj )

(kXx )i = k(xi ; x )
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Observed covariates: (conditional) ATE, ATT

Kernel features
(in revision, Biometrika):

NN features (ICLR 2023):

7/37



Average treatment effect
Potential outcome (intervention):

E(Y (a)) =

Z
E(y ja ; x )dp(x )

(the average structural function; in epidemiology, for continuous a ,
the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y (a) ?? AjX : (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

A: treatment (training hours)

Y : outcome (percentage
employment)

X : covariates (age, education,
marital status, ...)

X

A

a
Y (a)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs


0(a ; x ) := E[Y ja ; x ]

Assume we have:

covariate features '(x ) with
kernel k(x ; x 0)

treatment features '(a) with
kernel k(a ; a 0)

(argument of kernel/feature map indicates
feature space)

X

A

a
Y (a)

We use outer product of features ( =) product of kernels):

�(x ; a) = '(a)
 '(x ) K([a ; x ]; [a 0; x 0]) = k(a ; a 0)k(x ; x 0)

Ridge regression solution:


̂(x ; a) =
nX

i=1

yi�i (a ; x ); �(a ; x ) = [KAA �KXX + �I ]�1 KAa �KXx
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ATE (dose-response curve)

Well specified setting:


0(a ; x ) = E[Y ja ; x ]:

ATE as feature space dot product:

�ATE0 (a) = EP [
0(a ;X )]

= EP h
0; '(a)
 '(X )i

=



0; �P|{z}

EP'(X )


 '(a)
�

X

A

a
Y (a)
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=
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�

X

A

a
Y (a)

Feature map of probability P ,

�P = [: : :EP ['i (X )] : : :]
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ATE (dose-response curve)

Well specified setting:


0(a ; x ) = E[Y ja ; x ]:

ATE as feature space dot product:

�ATE0 (a) = EP [
0(a ;X )]

= EP h
0; '(a)
 '(X )i

=



0; �P|{z}

EP'(X )


 '(a)
�

X

A

a
Y (a)

For characteristic kernels, �P is injective.
Consistency: k�̂P � �PkH = OP (n�1=2)

10/37



ATE: empirical estimate and consistency

Empirical estimate of ATE:

�̂ATE(a) =
1
n

nX
i=1

Y >(KAA �KXX + n�I )�1(KAa �KXxi )

Consistency: 


�̂ATE � �ATEo





1

= OP

�
n�

1
2

c�1
c+1=b

�

Follows from consistency of �̂P and 
̂; under:

smoothness assumption 
0 2 Hc , c 2 (1; 2]

eigenspectrum decay of input feature covariance, �j � j�b , b � 1.

Singh, Xu, G (2022a), Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental
Response Curves.
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ATE: example

US job corps: training for dis-
advantaged youths:

X : covariate/context (age,
education, marital status, ...)

A: treatment (training hours)

Y : outcome (percent
employment)

X

A

a
Y (a)

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study.
Singh, Xu, G (2022a).
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ATE: results

0 500 1000 1500 2000
Class-hours

35

40

45

Pe
rc

en
t e

m
pl

oy
m

en
t

RKHS
DML2

First 12.5 weeks of classes confer employment gain: from 35% to 47%.
[RKHS] is our �̂ATE(a)
[DML2] Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.

Singh, Xu, G (2022a)
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Conditional average treatment effect

Learned conditional mean:

E[Y ja ; x ; v ] � 
0(a ; x ; v)

= h
0; '(a)
 '(x )
 '(v)i :

Conditional ATE

�CATEo (a ; v)

= E(Y (a)jV = v)

= EP (h
0; '(a)
 '(X )
 '(V )i jV = v)

X

A

a
Y (a)

V

Learn conditional mean embedding: �X jV=v := EX ('(X )jV = v)
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Learned conditional mean:
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0; '(a)
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�CATEo (a ; v)

= E(Y (a)jV = v)

= EP (h
0; '(a)
 '(X )
 '(V )i jV = v)

= :::?

X

A

a
Y (a)

V

How to take conditional expectation?
Density estimation for p(X jV = v)? Sample from p(X jV = v)?

Learn conditional mean embedding: �X jV=v := EX ('(X )jV = v)
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Conditional average treatment effect

Learned conditional mean:
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Regressing from feature space to feature space
Our goal: an operator E0 : HV !HX such that

E0'(v) = �X jV=v

Assume

E0 2 span f'(x )
 '(v)g () E0 2 HS(HV ;HX )

Implied smoothness assumption:

EP [h(X )jV = v ] 2 HV 8h 2 HX

Kernel ridge regression from '(v) to infinite features '(x ):

bE = argmin
E2HS

nX
`=1

k'(x`)� E'(v`)k2HX
+ �2kEk2HS

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning 15/37
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Kernel ridge regression from '(v) to infinite features '(x ):

bE = argmin
E2HS

nX
`=1

k'(x`)� E'(v`)k2HX
+ �2kEk2HS

Ridge regression solution:

�X jV=v := EP ['(X )jV = v ] � bE'(v) = nX
`=1

'(x`)�`(v)

�(v) = [KVV + �2I ]�1 kVv
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Consistency of conditional mean embedding
Assume problem well specified [B, Assumption 6]

E0 = G1 �T
c1�1
2

1 ; c1 2 (1; 2]; kG1k
2
HS � �1;

T1 is covariance of features '(v):

Eigenspectrum decays as �1;j � j�b1 , b1 � 1.

Larger c1 =) smoother E0 =) easier problem.

Consistency [A, Theorem 2, Theorem 3]


 bE � E0





HS

= OP

�
n�

1
2

c1�1
c1+1=b1

�
;

best rate is OP (n�1=4) (minimax)

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning
[B] Singh, Xu, G (2022a)

Earlier consistency proofs for finite dimensional '(x ):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007). 16/37



Consistency of conditional mean embedding
Assume problem well specified [B, Assumption 6]

E0 = G1 �T
c1�1
2

1 ; c1 2 (1; 2]; kG1k
2
HS � �1;

T1 is covariance of features '(v):

Eigenspectrum decays as �1;j � j�b1 , b1 � 1.

Larger c1 =) smoother E0 =) easier problem.
Consistency [A, Theorem 2, Theorem 3]


 bE � E0





HS

= OP

�
n�

1
2

c1�1
c1+1=b1

�
;

best rate is OP (n�1=4) (minimax)

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning
[B] Singh, Xu, G (2022a)

Earlier consistency proofs for finite dimensional '(x ):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007). 16/37



Consistency of CATE
Empirical CATE:

�̂CATE(a ; v)

= Y >(KAA �KXX �KVV + n�I )�1(KAa �KXX (KVV + n�1I )�1KVv| {z }
from �̂X jV=v

�KVv )

Consistency: [A, Theorem 2]

k�̂CATE � �CATE0 k1 = OP

�
n�

1
2

c�1
c+1==b + n�

1
2

c1�1
c1+1=b1

�
:

Follows from consistency of bE and 
̂; under the assumptions:

E0 = G1 �T
c1�1
2

1 ; kG1k
2
HS � �1,


0 2 H
c :

[A] Singh, Xu, G (2022a)
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Conditional ATE: example

US job corps: train-
ing for disadvantaged
youths:

X : confounder/context
(age, education,
marital status, ...)

A: treatment (training
hours)

Y : outcome (percent
employed)

V : age

X

A

a
Y (a)

V

Singh, Xu, G (2022a)
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Conditional ATE: results

500 1000 1500
Class-hours

16

18

20

22

24

Ag
e

36.0

36.0

40.0

40.0 40.044.0

44.048.0

52.0
56.0

Average percentage employment Y (a) for class hours a , conditioned
on age v . Given around 12-14 weeks of classes:

16 y/o: employment increases from 28% to at most 36%.
22 y/o: percent employment increases from 40% to 56%.

Singh, Xu, G (2022a)
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Counterfactual: average treatment on treated
Conditional mean:

E[Y ja ; x ] = 
0(a ; x )

= h
0; '(a)
 '(x )i

Average treatment on treated:

�ATT (a ; a 0)

= E(y (a 0)jA = a)

= EP
�


0; '(a 0)
 '(X )

�
jA = a

�
=



0; '(a 0)
 EP ['(X )jA = a ]| {z }

�X jA=a

�

X

A

a
Y (a)

Empirical ATT:

�̂ATT(a ; a 0)

= Y >(KAA �KXX + n�I )�1(KAa 0 �KXX (KAA + n�1I )�1KAa| {z }
from �̂X jA=a

)
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Mediation analysis

Direct path from treatment A to effect Y

Indirect path A ! M ! Y

X : context

Is the effect Y mainly due to A? To M ?

X

A

M

Y
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...dynamic treatment effect...
Dynamic treatment effect: sequence A1;A2 of treatments.

X1 X2

A1 A2 Y

potential outcomes Y (a1);Y (a2);Y (a1;a2);

counterfactuals E(y (a 01;a
0
2)jA1 = a1;A2 = a2)...

(c.f. the Robins G-formula)
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Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):
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The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A;Y
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

If X were observed (which it
isn’t),

E(Y (a)) =

Z
E(Y jx ; a)dp(x )

Bidirected arrow: possible con-
founding.

X

A Y

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder..

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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Z : treatment proxy

W outcome proxy

Bidirected arrow: possible con-
founding.

X WZ

A Y

Structural assumption:

W ?? (Z ;A)jX

Y ?? Z j(A;X )

=) Can recover E(Y (a)) from observational data!
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The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A;Y
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: possible con-
founding.

Proxy for bicycle ad example

X WZ

A Y

13/13

The proxy correction
What if X has complex nonlinear effects on A Y ?
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
either direction (or both).
Not all edges need be present.
The two important properties:

W Z X E

Y Z E X

Miao, Geng, Tchetgen Tchetgen (Biometrika 2018) 26/33
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Viewed ad

Interest in cycling

Bike purchase

Gym memberVisited bike website

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder..
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
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Observable Dynamical Systems.
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The proxy correction
If X were observed,

E(Y (a)) =

Z
E(Y ja ; x )p(x )dx :

....but we do not see p(x ):

Main theorem: Assume we have solved for bridge hy ...

E(Y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

(Fredholm integral of the first kind; subject to conditions for existence of solution)

...then average causal effect via p(w):

E(Y (a)) =

Z
hy(a ;w)p(w)dw

Expressions in terms of observed quantities, can be learned from data.

Miao, Geng, Tchetgen Tchetgen (2018)
Deaner (2021) Proxy controls and panel data.
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Causal representation learning for proxies (1)
Bridge equation (previous slide):

E(Y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

Squared loss for bridge (“stage 2”):

L2(h) = EYAZ (Y � E [h(A;W )jA;Z ])2

Assume NN features ��w with weights �w , and bridge of form

h(a ;w) = h>(��a (a)
 ��w (w)):

Then
E [h(A;W )ja ; z ] = h>

�
��a (a)
 E [��w (W )ja ; z ]| {z }

�W ja;z

�

�W ja ;z is neural conditional mean embedding.

Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation 26/37



Causal representation learning for proxies (1)
Bridge equation (previous slide):

E(Y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

Squared loss for bridge (“stage 2”):

L2(h) = EYAZ (Y � E [h(A;W )jA;Z ])2

Assume NN features ��w with weights �w , and bridge of form

h(a ;w) = h>(��a (a)
 ��w (w)):

Then
E [h(A;W )ja ; z ] = h>

�
��a (a)
 E [��w (W )ja ; z ]| {z }

�W ja;z

�

�W ja ;z is neural conditional mean embedding.

Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation 26/37



Causal representation learning for proxies (1)
Bridge equation (previous slide):

E(Y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

Squared loss for bridge (“stage 2”):

L2(h) = EYAZ (Y � E [h(A;W )jA;Z ])2

Assume NN features ��w with weights �w , and bridge of form

h(a ;w) = h>(��a (a)
 ��w (w)):

Then
E [h(A;W )ja ; z ] = h>

�
��a (a)
 E [��w (W )ja ; z ]| {z }

�W ja;z

�

�W ja ;z is neural conditional mean embedding.

Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation 26/37



Causal representation learning for proxies (1)
Bridge equation (previous slide):

E(Y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

Squared loss for bridge (“stage 2”):

L2(h) = EYAZ (Y � E [h(A;W )jA;Z ])2

Assume NN features ��w with weights �w , and bridge of form

h(a ;w) = h>(��a (a)
 ��w (w)):

Then
E [h(A;W )ja ; z ] = h>

�
��a (a)
 E [��w (W )ja ; z ]| {z }

�W ja;z

�

�W ja ;z is neural conditional mean embedding.

Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation 26/37



Causal representation learning for proxies (2)
Our challenges:

1 How to obtain �W ja ;z := EW [��w (W )ja ; z ] for fixed �w?
2 How to optimize �w?

Challenge 1: neural conditional mean embedding �W ja ;z by ridge
regression (“Stage 1”):

Ê�w = argmin
E

EWAZ k��w (W )� E�
(A;Z )k2 + �1kEk2HS

�W ja ;z = Ê�w�
(a ; z )

Ê�w in closed form wrt ��w ; �
 : plug it in, take gradient steps for 


(...but not �w - why not?)

Xu, Kanagawa, G. (2021)
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Ê�w = argmin
E

EWAZ k��w (W )� E�
(A;Z )k2 + �1kEk2HS

�W ja ;z = Ê�w�
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Causal representation learning for proxies (3)
Challenge 2: optimize �w by plugging in the Stage 1 solution!

L2(h) = EYAZ (Y � E[h(A;W )jA;Z ])2

= EYAZ

h
Y � h>

�
��a (A)
 �W jA;Z

�i2
= EYAZ

h
Y � h>

�
��a (A)


�
Ê�w�
(A;Z )

��i2
ĥy in closed form wrt ��w ; ��a by ridge regression:

ĥy := argmin
h

L2(h) + �1khk2:

Plug in ĥy , take gradient steps on �a ; �w
....but 
 changes with �w
...so alternate first and second stages until convergence.

Xu, Kanagawa, G. (2021)
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Ê�w�
(A;Z )

��i2
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Synthetic experiment

Dsprite example:
X =

fscale; rotation; posX; posYg

Treatment A is the image
generated (with Gaussian noise)

Outcome Y is quadratic
function of A with
multiplicative confounding by
posY.

Z = fscale; rotation; posXg;

W =noisy image sharing posY

1000 5000
Data Size

5

10

20

Ou
t-o

f-S
am

pl
e 

M
SE

Algorithm
KPV
PMMR
CEVAE
DFPV
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Confounded offline policy evaluation

Synthetic dataset, demand
prediction for flight pur-
chase.

Treatment A is ticket
price.

Policy A � �(Z ) depends
on fuel price.

1500 7500
Data Size

0.1

1

10

Ab
us

ol
ut

e 
Er

ro
r

Algorithm
KPV
PMMR
DFPV
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Conclusions
Neural net and kernel solutions:

...for ATE, ATT, CATE, mediation analysis, dynamic treatment
effects
...even for unobserved covariates (proxy methods)
...with treatment A, covariates X ;V , proxies (W ;Z ) multivariate,
“complicated”
Convergence guarantees for kernels and NN

Not in this talk:

Elasticities
Regression to potential outcome distributions overY (not just
E(Y (a)j : : :))
Instrumental variable regression (kernel and NN)

Code available for NN and kernel proxy methods:
https://github.com/liyuan9988/DeepFeatureProxyVariable/ 31/37

https://github.com/liyuan9988/DeepFeatureProxyVariable/


Selected papers

Observed confounders:

ICLR 2023:

Unobserved confounders:

ICML 2021:

NeurIPS 2021:

NeurIPS 2019:
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Questions?
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Proxy proof (discrete variables)
If X were observed,

P(Y jdo(a)) :=
DX

i=1

P(y jxi ; a)P(xi )

= P(y jX ; a)P(X )

Because W ?? (Z ;A)jX ,

P(W jZ ; a) = P(W jX )P(X jZ ; a)

=) P(X jZ ; a) = P�1(W jX )P(W jZ ; a)

Because Y ?? Z j(A;X ),

P(y jZ ; a) = P(y jX ; a)P�1(W jX )P(W jZ ; a)| {z }
P(X jZ ;a)

=) p(y jX ; a) = p(y jZ ; a)P�1(W jZ ; a)P(W jX )

The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A Y ?
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
either direction (or both).

X WZ

A Y

Not all edges need be present.
Structural assumption:

W Z A X

Y Z A X
Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 28/38
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Proof (discrete variables)

From previous slide:

p(y jX ; a) = p(y jZ ; a)P�1(W jZ ; a)P(W jX )

Multiply LHS and RHS by P(X ):

P(Y (a)) := P(y jX ; a)P(X )

= p(y jZ ; a)P�1(W jZ ; a)P(W jX )P(X )| {z }
P(W )

The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A Y ?
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
either direction (or both).

X WZ

A Y

Not all edges need be present.
Structural assumption:

W Z A X

Y Z A X
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confounder. 28/38

Average causal effect using only observed data!
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Instrumental variable setting (1)
Unobserved confounder e =) prediction 6= counterfactual
prediction
goal: learn causal relationship h between input X and output Y

� if we intervened on X , what would be the effect on Y ?
Instrument Z only influences Y via X ; identifying h

Z X Y

e

h

Y = hh ;  (X )i+ e E(e jZ ) = 0

Singh, Sahani, G., (NeurIPS 2019)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. (ICLR 2021)
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Instrumental variable setting (2)

Z X Y

e

h

Ridge regression of  (X ) on �(Z )
� using n observations
� construct conditional mean embedding �(z ) := E[ (X )jZ = z ]

Ridge regression of Y on �(Z )
� using remaining m observations
� this is the estimator for h

Solved using kernel and learned NN features

Singh, Sahani, G., (NeurIPS 2019)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. (ICLR 2021)
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