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Observation vs intervention

Conditioning from observation: E(Y|A = a) =Y E(Y]a, z)p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.80
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect (intervention): E(Y (%) =, E(Y|a, z)p(z)

From our intervention (making all patients take a treatment):
m P(Y = cured|do(pills)) = 0.64
m P(Y = cured|do(surgery)) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the

Counterfactual and Graphical Approaches to Causality 2/37



Questions we will solve

/



Outline

Talk structure:

m Average treatment effect (ATE)
...via kernel mean embedding (marginalization)

m Conditional average treatment effect (CATE)
via kernel conditional mean embedding

m Proxy methods
...when covariates are hidden
...causal representation learning via neural conditional mean
embedding

Advantages of the approach:

m Treatment A, covariates X, etc can be multivariate, complicated...

m Simple, robust implementation;

m Strong statistical guarantees under general smoothness assumptions
(kernel)
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Key requirement: linear functions of features

All learned functions will take the form:

i(z) =" p(z) = (1, 0(2))y
Option 1: Finite dictionaries of learned neural net features (linear
final layer)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded
Bandit Policy Evaluation”. (NeurIPS 21)

Xu, G., “A Neural mean embedding approach for back-door and front-door adjustment
(ICLR23)

Option 2: Infinite dictionaries of fixed kernel features:

(p(z:), p(2))gy = k(i )

Kernel is feature dot product.

Mastouri*, Zhu*, Gultchin, Korba, Silva, Kusner, G, Muandet! (2021); Proximal Causal
Learning with Kernels: Two-Stage Estimation and Moment Restrictionb (ICML21)

Singh, Xu, G, (2022a) Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves (Biometrika, in revision) 5/37



Key building block: ridge regression

Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

¥ = argmin (Z(yi—<7,¢($¢)>H)2+>\H“YH%>-

TEH 1=1
Kernel as feature dot product:

(p(z:), p(z))g, = k(zi, T)
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Key building block: ridge regression

Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

n
4 = argmin (Z(yi—<%<p(w¢)>a)2+>\HvH%>-
’YEH =1

Kernel as feature dot product:

(p(z:), p(z))g, = k(zi, T)

08
Solution at z: 06
n 04
Y(z) = Zaik(:z:i, z) Z 02
1=1 0
a ::(ffxx’+-AI)71§’ 0.2
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6/37



Key building block: ridge regression

Learn o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

¥ = argmin (Z(yi—<%<p(w¢)>a)2+>\H”YH%>-

TEH 1=1
Kernel as feature dot product:

(p(z:), p(z))g, = k(zi, T)

Solution at z (as weighted sum of y) 08

0.6

n 0.4

= vifi(z) 2 05

i=1 - .

Ble) = (Kxx + M) ke,
(Kxx)ij = k(zi, 25) e 4 2 o 2 4 6 s

(kxz); = k(z:, z) "



Observed covariates: (conditional) ATE, ATT

Kernel features
(in revision, Biometrika):
ar (iv > econ > arXiv:2(

Search,
4855

Help | Advar
Economics > Econometrics
[Submitted on 10 Oct 2020 (1), last revised 23 Aug 2022 (this version, v6)]

Kernel Methods for Causal Functions: Dose, Heterogeneous,
and Incremental Response Curves

Rahul Singh, Liyuan Xu, Arthur Gretton

NN features (ICLR 2023):

ar (1v > ¢s > arXiv:2210.06610

Search

Help | Advan|

Computer Science > Machine Learning
[submited on 12 Oct 2022]

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton
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Average treatment effect

Potential outcome (intervention):
B(Y(®) = [ E(yle,2)dp(a)

(the average structural function; in epidemiology, for continuous a,

the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y () 1L A|X. (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

m A: treatment (training hours)

m Y: outcome (percentage
employment)

m X: covariates (age, education, @
marital status, ...) @
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Y(a,z) :=E[Y]a, z]

Assume we have:
m covariate features p(z) with
kernel k(z, z') @
m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):
¢(z,a) =p(a)®p(z)  K([a,z][a,2]) = k(a, a')k(z, ')
Ridge regression solution:

’7(1"1 a) = Z yi;Bi(a': (E), ﬂ(ax IE) = [KAA © KXX + AI]_I KAa © Kg&y
=1



ATE (dose-response curve)
Well specified setting:

Y(a,z) =E[Y|a, z].
ATE as feature space dot product:

65" "(a) = Ep[yo(a, X)]

=Ep (70, p(a) ® 9(X)) @
o
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ATE (dose-response curve)
WEell specified setting:

Y(a,z) = E[Y|a, z].
ATE as feature space dot product:

05 %(a) = Ep[yo(a, X)]
=Ep (70, 9(a) ® p(X))

= (7, pp ®p(a))
~—
Epep(X)

ClE

Feature map of probability P,

pp=1[..Epfpi(X)].. ]
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ATE (dose-response curve)

Well specified setting:
Y(a,z) =E[Y|a, z].
ATE as feature space dot product:

05 %(a) = Ep[10(a, X)]
=Ep (’)’0, (P(a) ® ‘P(X)>

= (70, pp ®p(a))
—
Epp(X)

Gl

For characteristic kernels, up is injective.

Consistency: [|2p — upll% = Op(n1/?)

10/37



ATE: empirical estimate and consistency

Empirical estimate of ATE:

- 1 & _
6ATE (o) = - S YT (Kua © Kxx +nAI) " (Kaq © Kxa,)
=1

Singh, Xu, G (2022a), Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental
Response Curves.
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ATE: empirical estimate and consistency

Empirical estimate of ATE:

- 1 & _
6ATE (o) = - S YT (Kua © Kxx +nAI) " (Kaq © Kxa,)
1=1

Consistency:

~ 1 _c—1
GATE _ H,OATEH = Op <n 2 c+1/b>
(o]

Follows from consistency of ip and 7, under:

m smoothness assumption 7 € H€, ¢ € (1,2]

m eigenspectrum decay of input feature covariance, n; ~ j —bbh>1.

Singh, Xu, G (2022a), Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental
Response Curves.
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ATE: example

US job corps: training for dis-
advantaged youths:

m X: covariate/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (percent
employment)

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study.

Singh, Xu, G (2022a).
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ATE: results
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Class-hours

m First 12.5 weeks of classes confer employment gain: from 35% to 47%.
m [RKHS] is our §4TE(q)
| Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.
Singh, Xu, G (2022a)
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Conditional average treatment effect

Learned conditional mean:

E[Y]a,z,v] ~ 70(a,z,v)
= (70, 0(a) ® p(z) ® p(v)) .

Conditional ATE @/ @

0945 (a, v)

=E(Y@|V =)
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Conditional average treatment effect

Learned conditional mean:
E[Y|a7 z, ’U] ~ ’YO(aﬂ z, U)
= (70, p(a) ® p(z) ® p(v)) .
Conditional ATE

0945 (a, v)

=E(Y|V =)
=Ep ((10,0(a) @ p(X) @ p(V)) |V = v)
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Conditional average treatment effect

Learned conditional mean:

E[Y]a,z,v] ~ v(a,z v)
= (70, 9(a) ® p(z) ® p(v)

Conditional ATE @/.
sk o

a,v)
=E(Y@|V =)

=Epr ({10, 90(a) ® p(X) @ (V) |V = v)
=..7

How to take conditional expectation?

Density estimation for p(X|V = v)? Sample from p(X|V = v)?
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Conditional average treatment effect

Learned conditional mean:

E[Y]a,z,v] ~ v(a, z, v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @ @
GSATE( a, ’U) /

=E(Y®|V =)
=Ep ({10, p(a) ® p(X) @ p(V)) |V = )
= (10, p(0) @ Ex[p(X)| V = v] ® p(v))

BX|V=y

Learn conditional mean embedding: px|v—, := Ex (¢(X)|V = v)

14/37



Regressing from feature space to feature space

Our goal: an operator 7y : Hy —Hx such that

Fop(v) = px|v—o

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.

Grunewalder, G, Shawe-Taylor (2013) Smooth operators.

Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding

Learning 15/37
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Our goal: an operator 7y : Hy —Hx such that

Fop(v) = px|v—o

Assume

Fy € span{p(z) ® (v)} < FE, € HS(Hy, Hx)
Implied smoothness assumption:
Ep[h(X)|V =v] € Hy VheEHx

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
b = argmin ) | llo(ze) = Zeo(w)ll3, + Aol s
EEHS ;23
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Regressing from feature space to feature space

Our goal: an operator : Hy —Hx such that

p(v) = px|v—o

Assume

€ span{p(z) ® p(v)} <= € HS(Hy,Hx)
Implied smoothness assumption:
Ep[h(X)|V =v] € Hy VheEHx

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
= argmin } _ [lp(z2) — Zep(ve)l,, + Aall Zll%s
€HS ;21

Ridge regression solution:

n

px|v=y = Ep[p(X)|V = v] & Bp(v) = ) p(z)Be(v)
=1

B(v) = [Kvv + A  kyy
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Consistency of conditional mean embedding

Assume problem well specified [B, Assumption 6]
c1—1

EO = G]. @] Tl 2 ) C1 E (172]1 HG]-H?{S S Cl’

T} is covariance of features ¢(v):
m Eigenspectrum decays as 71, ~ 370, by > 1.
Larger c; = smoother 7, = easier problem.

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning
[B] Singh, Xu, G (2022a)

Earlier consistency proofs for finite dimensional ¢(z):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007). 16/37



Consistency of conditional mean embedding

Assume problem well specified [B, Assumption 6]
c1—1

Ey=Gyo Ty 2, ac€ (172]1 HG1H§-IS < (1,

T} is covariance of features ¢(v):

m Eigenspectrum decays as 71, ~ 370, by > 1.
Larger c; = smoother 7, = easier problem.
Consistency [A, Theorem 2, Theorem 3|

. 1 _c¢-1
[£ - 2]y = 0r (» 255575).
best rate is Op(n~'/4) (minimax)

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning

[B] Singh, Xu, G (2022a)

Earlier consistency proofs for finite dimensional ¢(z):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).

Caponnetto, De Vito (2007). 16/37



Consistency of CATE
Empirical CATE:

éCATE(a, ’U)

= Y (Kaa © Kxx © Kyy + nA )" H(Kag © Kxx (Kyy + n\I) 'Ky, © Ky)

from fix|v=y
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Consistency of CATE
Empirical CATE:

éCATE(a’ ’U)

= Y (Kaa © Kxx © Kyy + nA )" H(Kag © Kxx (Kyy + n\I) 'Ky, © Ky)

from fix|v=y

Consistency: [A, Theorem 2]
GOATE _ gCATE) _ “STr 4 g vatie
||9 _90 ||oo—OP n T+ n 1+1/0 )

Follows from consistency of % and 4, under the assumptions:
-1
m Oy =CGio T 7, ||Gills <G,
m 7 € HE.

[A] Singh, Xu, G (2022a)
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Conditional ATE: example

US job corps: train-
ing for disadvantaged
youths:

m X: confounder/context
(age, education,
marital status, ...)

m A: treatment (training
hours)

m Y: outcome (percent
employed)
m V: age

Singh, Xu, G (2022a)
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Conditional ATE: results

24

221
9201 <
48.0 AL
1813
16 ' 49.0 36.0 ——]
500 1000 1500
Class-hours

Average percentage employment Y () for class hours a, conditioned
on age v. Given around 12-14 weeks of classes:

m 16 y/o: employment increases from 28% to at most 36%.

m 22 y/o: percent employment increases from 40% to 56%.
Singh, Xu, G (2022a)
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Counterfactual: average treatment on treated
Conditional mean:

E[Y]a, z] = 70(a, z)
Average treatment on treated:

GATT(G,, )

= E(y)]4 = a) @
D
o

Empirical ATT:

64T (a, o')
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Counterfactual: average treatment on treated
Conditional mean:

E[Y’aﬁ :IZ] = ’YO(G’: IIZ) = <707 ‘P(a) ® (p((IZ))
Average treatment on treated:

GATT(G,, )

= E(y*)]A = a) A
D
—

Empirical ATT:

64T (a, o')
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Counterfactual: average treatment on treated
Conditional mean:

E[Y]a, z] = 70(a, z)
Average treatment on treated:

GATT(G,, )

= E(y(")|A = a) @
=Ep ((10,9(0") ® p(X)) |A = a) ‘@
:<';:),<p( ) ® Ep[p(X)|A = al) /

HEX|A=a

Empirical ATT:

64T (a, o')
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Counterfactual: average treatment on treated
Conditional mean:

E[Y]a, z] = 70(a, z)
Average treatment on treated:

GATT(G,, )

= E(y(")|A = a) @
=Ep ((10,9(0") ® p(X)) |A = a) ‘@
:<';:),<p( ) ® Ep[p(X)|A = al) /

HEX|A=a

Empirical ATT:
éATT ( a, )

= YT (Kaa © Kxx + nA) N (Kaw © Kxx(Kaa +nAI) K a,)

from fixja=a 20/37



Mediation analysis

m Direct path from treatment A to effect Y
m Indirect path A > M - Y

m X: context

Is the effect Y mainly due to A? To M?

21/37



...dynamic treatment effect...

Dynamic treatment effect: sequence A;, A, of treatments.

Q‘ ()

m potential outcomes Y(‘“), Y(az), Y(al’az),
m counterfactuals E(y(“i’aé)]Al = a1, Ay = a)...
(c.f. the Robins G-formula)
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Searcn
Help | Advani

Computer Science > Machine Learning

ISubmitted on 10 May 2021 (), fas revised 9 Oct 2021 this version, vé)]

Proximal Causal Learning with Kernels: Two-Stage

Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Computer Science > Machine Learning

[Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Searcn

Help | Advand

Deep Proxy Causal Learning and its Application to

Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

23/37



The proxy correction

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:
m X: unobserved confounder.
m A: treatment LR

® Y: outcome ‘pe

If X were observed (which it
isn't),

B(Y() = [E(Yle, a)dp(e)

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.. 24/37



The proxy correction

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

X: unobserved confounder.
A: treatment RS
Y: outcome ¢ Se.d
Z: treatment proxy '
W outcome proxy b
Bidirected arrow: possible con- @ @
founding.
Structural assumption:
W (Z,A))X
Y 1l Z|(A,X)

— Can recover E(Y (%)) from observational data!

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.. 24/37



The proxy correction

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:
m X: unobserved confounder.

m A: treatment

Visited bike website Interest in cycling Gym member

m Y: outcome e, .
TIREIC 7 X . @ ‘ e‘
m Z: treatment proxy cannondale s S

m W outcome proxy

Viewed ad Bike purchase
,:'NMLLL
(DY g)

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder..
Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.
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The proxy correction

If X were observed,
E(Y(@) = /E(Y|a,x)p(m)dm.

....but we do not see p(z).

Miao, Geng, Tchetgen Tchetgen (2018)
Deaner (2021) Proxy controls and panel data.
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The proxy correction

If X were observed,
E(Y(@) = /E(Y|a,x)p(m)d:p.

....but we do not see p(z).

Main theorem: Assume we have solved for bridge hy...

E(Y|z,a) :/hy(w,a)p(w|z,a)dw

(Fredholm integral of the first kind; subject to conditions for existence of solution)

Miao, Geng, Tchetgen Tchetgen (2018)
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The proxy correction
If X were observed,
E(Y(@) = /E(Y|a,:z:)p(m)d:1:.

....but we do not see p(z).
Main theorem: Assume we have solved for bridge hy...
E(Y|z,a) = / hy(w, a)p(w|z, a)dw

(Fredholm integral of the first kind; subject to conditions for existence of solution)

...then average causal effect via p(w):

E(y(@) = /hy(a,w)p(w)dw

Expressions in terms of observed quantities, can be learned from data.

Miao, Geng, Tchetgen Tchetgen (2018)
Deaner (2021) Proxy controls and panel data.

25/37



Causal representation learning for proxies (1)

Bridge equation (previous slide):

E(Y|z,a) :/hy(w,a)p(w|z,a)dw

Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation 26/37
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Causal representation learning for proxies (1)
Bridge equation (previous slide):
E(Yz,0) = [ hy(w, a)p(ulz, a)dw

Squared loss for bridge (“stage 2”):

La(h) = Evaz(Y —E[h(4, W)|A, Z])?
Assume NN features ¢y, with weights 8,,, and bridge of form
h(a, w) = h' (¢, (a) ® ¢o, (w))-

Then
E[n(4, W)|a,2] = 17 (¢s.(a) ® E[gs,(W)|a, 2])

is neural conditional mean embedding.

Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation 26/37



Causal representation learning for proxies (2)

Our challenges:

1 How to obtain 11y, . := Ew [¢e,(W)|a, 2] for fixed 6,7
2 How to optimize 6,7

Xu, Kanagawa, G. (2021)
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Causal representation learning for proxies (2)

Our challenges:

1 How to obtain =Ew [¢s,(W)]|a, z] for fixed 6,,7
2 How to optimize 6,7

Challenge 1: neural conditional mean embedding by ridge
regression (“Stage 1”):

o, = argmin Ewazl|ge, (W) — £¢,(A, Z)I* + Ml 2 s

= 9w¢’y(a’)z)

Xu, Kanagawa, G. (2021)
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Causal representation learning for proxies (2)

Our challenges:

1 How to obtain =Ew [¢s,(W)]|a, z] for fixed 6,,7
2 How to optimize 6,7

Challenge 1: neural conditional mean embedding by ridge
regression (“Stage 1”):

o, = argmin Ewazl|ge, (W) — £¢,(A, Z)I* + Ml 2 s

= 9w¢’y(a’)z)

¢, in closed form wrt ¢y, ¢,: plug it in, take gradient steps for 7y

(...but not 6, - why not?)

Xu, Kanagawa, G. (2021)
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Causal representation learning for proxies (3)

Challenge 2: optimize 8, by plugging in the Stage 1 solution!
Lo(h) = Evaz(Y — E[R(4, W)|A, Z])?

Xu, Kanagawa, G. (2021)
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Causal representation learning for proxies (3)

Challenge 2: optimize 8, by plugging in the Stage 1 solution!
Lo(h) = Eyaz(Y — E[h(4, W)|4, 2))°
=Evaz [Y -1 (¢o.(4) ® )]’
=Evaz [Y —h' (¢ea(A) ® ( 6,91 (4A, Z)))r

ﬁy in closed form wrt ¢y, ¢s, by ridge regression:

hy := argmin Lo(h) + Ay 2|2
h

Plug in ﬁy, take gradient steps on 6,, 8,

....but v changes with 6,

...s0 alternate first and second stages until convergence.
Xu, Kanagawa, G. (2021)
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Synthetic experiment

0
20
40

60

0 25 50

Dsprite example:
X =
{scale, rotation, posX, posY}
B Treatment A is the image
generated (with Gaussian noise)
B Outcome Y is quadratic
function of A with

multiplicative confounding by
posY.

B Z = {scale, rotation, posX},
W =noisy image sharing posY

Out-of-Sample MSE

N
o

10/

'

1000 5000
Data Size

Algorithm
KPV
£ PMMR

CEVAE
£ DFPV
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Confounded offline policy evaluation

Synthetic dataset, demand
prediction for flight pur-

104
chase.

m Treatment A is ticket 2
price. ":J
m Policy A ~ m(Z) depends 3
n
on fuel price. F
<

0.14

=
$
’ Algorithm
KPV
£ PMMR
&5 DFPV
1500 7500
Data Size
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Conclusions

Neural net and kernel solutions:

m ..for ATE, ATT, CATE, mediation analysis, dynamic treatment
effects

m ...even for unobserved covariates (proxy methods)

m ..with treatment A, covariates X, V, proxies (W, Z) multivariate,
“complicated”

m Convergence guarantees for kernels and NN

Not in this talk:

m Elasticities

m Regression to potential outcome distributions over Y (not just
E(Y(®)]..)

m Instrumental variable regression (kernel and NN)

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ 31/37


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Selected papers

Unobserved confounders:
Observed confounders:

‘ ICML 2021:
ar (iv > econ > arXiv:2010.04855 oy

Help | Adv
Economics > Econometrics

arXiv.org > cs > arXiv:2105.04544
[submitted on 10 Oct 2020 (v1), Iast revised 23 Aug 2022 (thi version, v&]

Computer Science > Machine Learning
Kernel Methods for Causal Functions: Dose, Heterogeneous,
and Incremental Response Curves

[submitted on 10 May 2021 (v1),las revised 9 Oct 2021 (this version, v4)]
Rahul Singh, Liyuan Xu, Arthur Gretton

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet
arXiv.org > stat > arXiv:2111.03950

Help | Ad

NeurIPS 2021:

Kernel Methods for Multistage Causal Inference: Mediation

Statistics > Methodology

Help | Advand
Analysis and Dynamic Treatment Effects Computer Science > Machine Learning
Rahul Singh, Liyuan Xu, Arthur Gretton

[submitted on 7 Jun 2021 (1) last revised 7 Dec 2021 this version, v2)]

Deep Proxy Causal Learning and its Application to
ICLR Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton
ar <1V > ¢s > arXiv:2210.06610

Help | Advan
Computer Science > Machine Learning

NeurIPS 20109:

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton

arXiv.org > ¢s > arXiv:1906.00232

telp | Ad
Computer Science > Machine Learning
[Submitted on 1 Jun 2019 (v1), last revised 15 Jul 2020 (this version, v6)]
Kernel Instrumental Variable Regression

Rahul Singh, Maneesh Sahani, Arthur Gretton
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Questions?
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Proxy proof (discrete variables)

If X were observed,
D

P(Y|do(a)) := ) P(ylzi, a) P(z:)

1=1

AVAN

—
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Proxy proof (discrete variables)

If X were observed,

D
P(Y|do(a)) =) P(ylzi, a)P(z;) = P(y|X, a) P(X)
1=1

Because ,

o=~
o
@._X ...... N
X !

P(W|Z,a) = P(W|X)P(X|Z,a) " /\G>
O—
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Proxy proof (discrete variables)

If X were observed,

D
P(Y|do(a)) =) P(ylzi, a)P(z;) = P(y|X, a) P(X)
1=1

Because ,

T
- P(X|Z, a) = “‘
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Because Y 1L Z|(A, X),

P(y|Z,a) = P(y|X, a)

P(X|Z,a)

= p(y|X,a) =p(y|Z,a)
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Proof (discrete variables)

From previous slide:

p(ylX,a) = p(y|Z,a)P~H(W|Z, a) P(W|X)

Y /
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Proof (discrete variables)

From previous slide:

p(y|X,a) = p(y|Z,a)P"H(W|Z, a) P(W]|X)

Multiply LHS and RHS by P(X): '\ /

P(Y(@)) .= P(y|X, a)P(X) O—
=p(y|Z,a)P " (W|Z, a) P(W|X)P(X)

P(W)

Average causal effect using only observed data!

35/37



Instrumental variable setting (1)

m Unobserved confounder e = prediction # counterfactual

prediction
m goal: learn causal relationship ~ between input X and output Y
¢ if we intervened on X, what would be the effect on Y'?

m Instrument Z only influences Y via X, identifying A

® e 0O
Y =(ho(X)+e E(e|Z)=0

Singh, Sahani, G., (NeurIPS 2019)
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Instrumental variable setting (1)

m Unobserved confounder e = prediction # counterfactual

prediction
m goal: learn causal relationship ~ between input X and output Y
¢ if we intervened on X, what would be the effect on Y'?

m Instrument Z only influences Y via X, identifying A

other market forces

Y

@ -0

gas price ticket price ticket sales

=

Y =(h,9(X))+e E(e|Z)=0

Singh, Sahani, G., (NeurIPS 2019)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. (ICLR 2021) 36/37
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Instrumental variable setting (2)

® & 0O

m Ridge regression of (X)) on ¢(Z2)

® using n observations

¢ construct conditional mean embedding u(z) := E[¢(X)|Z = 2]
m Ridge regression of Y on p(Z2)

® using remaining m observations

¢ this is the estimator for A
m Solved using kernel and learned NN features

Singh, Sahani, G., (NeurIPS 2019)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. (ICLR 2021)
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