Kernel Methods for Comparing Distributions and Training Generative Models: Part 2

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

OAMLS, 2022

Training generative models

■ Have: One collection of samples X from unknown distribution P.
■ Goal: generate samples Q that look like P

LSUN bedroom samples P

Generated Q, MMD GAN Role of divergence $D(P, Q)$?

Outline

- ϕ-divergences (f-divergences) and a variational lower bound (KL)

■ Generalized energy-based models

- "Like a GAN" but incorporate critic into sample generation
- Perform better than using generator alone

Arbel, Zhou, G., Generalized Energy Based Models (ICLR 2021)

Divergences

Divergences

The Integral Probability Metrics

Maximum mean discrepancy

A helpful critic witness:

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F} \leq 1}} E_{P} f(X)-E_{Q} f(Y)
$$

$M M D=1.8$

Maximum mean discrepancy

A helpful critic witness:

$$
M M D(P, Q)=\sup _{\|f\|_{\mathcal{F}} \leq 1} E_{P} f(X)-E_{Q} f(Y)
$$

$\mathrm{MMD}=1.1$

The ϕ-divergences

The ϕ-divergences

Define the ϕ-divergence(f-divergence):

$$
D_{\phi}(P, Q)=\int \phi\left(\frac{p(z)}{q(z)}\right) q(z) d z
$$

where ϕ is convex, lower-semicontinuous, $\phi(1)=0$.
$\phi(u)=u \log (u)$ gives KL divergence,

$$
\begin{aligned}
D_{K L}(P, Q) & =\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& =\int\left(\frac{p(z)}{q(z)}\right) \log \left(\frac{p(z)}{q(z)}\right) q(z) d z
\end{aligned}
$$

The ϕ-divergences

Define the ϕ-divergence(f-divergence):

$$
D_{\phi}(P, Q)=\int \phi\left(\frac{p(z)}{q(z)}\right) q(z) d z
$$

where ϕ is convex, lower-semicontinuous, $\phi(1)=0$.

■ Example: $\phi(u)=u \log (u)$ gives KL divergence,

$$
\begin{aligned}
D_{K L}(P, Q) & =\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& =\int\left(\frac{p(z)}{q(z)}\right) \log \left(\frac{p(z)}{q(z)}\right) q(z) d z
\end{aligned}
$$

Are ϕ-divergences good critics?

Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

$$
D_{K L}(P, Q)=\infty \quad D_{J S}(P, Q)=\log 2
$$

Are ϕ-divergences good critics?

Simple example: disjoint support.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

$$
D_{K L}(P, Q)=\infty \quad D_{J S}(P, Q)=\log 2
$$

ϕ-divergences in practice

Background: the conjugate (Fenchel) dual

$$
\phi^{*}(v)=\sup _{u \in \mathbb{R}}\{u v-\phi(u)\} .
$$

■ $\phi^{*}(v)$ is negative intercept of tangent to ϕ with slope v

ϕ-divergences in practice

Background: the conjugate (Fenchel) dual

$$
\phi^{*}(v)=\sup _{u \in \mathbb{R}}\{u v-\phi(u)\} .
$$

$■$ For a convex l.s.c. ϕ we have

$$
\phi^{* *}(x)=\phi(x)=\sup _{v \in \mathbb{R}}\left\{x v-\phi^{*}(v)\right\}
$$

ϕ-divergences in practice

Background: the conjugate (Fenchel) dual

$$
\phi^{*}(v)=\sup _{u \in \mathbb{R}}\{u v-\phi(u)\} .
$$

■ For a convex l.s.c. ϕ we have

$$
\phi^{* *}(x)=\phi(x)=\sup _{v \in \mathbb{R}}\left\{x v-\phi^{*}(v)\right\}
$$

■ KL divergence:

$$
\phi(x)=x \log (x) \quad \phi^{*}(v)=\exp (v-1)
$$

A variational lower bound

A lower-bound ϕ-divergence approximation:
$D_{\phi}(P, Q)=\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
\begin{aligned}
D_{\phi}(P, Q) & =\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z \\
& =\int q(z) \underbrace{\sup _{f_{z}}\left(\frac{p(z)}{q(z)} f_{z}-\phi^{*}\left(f_{z}\right)\right)}_{\phi\left(\frac{p(z)}{q(z)}\right)}
\end{aligned}
$$

$$
\phi^{*}(v) \text { is dual of } \phi(x)
$$

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
\begin{aligned}
D_{\phi}(P, Q) & =\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z \\
& =\int q(z) \sup _{f_{z}}\left(\frac{p(z)}{q(z)} f_{z}-\phi^{*}\left(f_{z}\right)\right) \\
& \geq \sup _{f \in \mathcal{H}} \mathrm{E}_{P} f(X)-\mathrm{E}_{Q} \phi^{*}(f(Y))
\end{aligned}
$$

(restrict the function class)

A variational lower bound

A lower-bound ϕ-divergence approximation:

$$
\begin{aligned}
D_{\phi}(P, Q) & =\int q(z) \phi\left(\frac{p(z)}{q(z)}\right) d z \\
& =\int q(z) \sup _{f_{z}}\left(\frac{p(z)}{q(z)} f_{z}-\phi^{*}\left(f_{z}\right)\right) \\
& \geq \sup _{f \in \mathcal{H}} \mathrm{E}_{P} f(X)-\mathrm{E}_{Q} \phi^{*}(f(Y))
\end{aligned}
$$

(restrict the function class)
Bound tight when:

$$
f^{\diamond}(z)=\partial \phi\left(\frac{p(z)}{q(z)}\right)
$$

if ratio defined.

Case of the KL

$$
D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z
$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z$
$\geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \underbrace{\exp (-f(Y))}_{\phi^{*}(-f(Y)+1)}$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z$
$\geq \sup -\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y))$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

Bound tight when:
$f^{\diamond}(z)=-\log \frac{p(z)}{q(z)}$
if ratio defined.

Case of the KL

$D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z$
$\geq \sup -\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y))$
$x_{i} \stackrel{\text { i.i.d. }}{\sim} P$ $f \in \mathcal{H}$
$\approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z$
$\geq \sup -\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y))$
$f \in \mathcal{H}$
$\approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1$

This is a
KL
Approximate
Lower-bound
Estimator.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Case of the KL

$D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z$
$\geq \sup -\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y))$
$f \in \mathcal{H}$
$\approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1$

This is a
K
A
L
E

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the KL

$$
\begin{aligned}
& D_{K L}(P, Q)=\int \log \left(\frac{p(z)}{q(z)}\right) p(z) d z \\
& \geq \sup _{f \in \mathcal{H}}-\mathrm{E}_{P} f(X)+1-\mathrm{E}_{Q} \exp (-f(Y)) \\
& \approx \sup _{f \in \mathcal{H}}\left[-\frac{1}{n} \sum_{j=1}^{n} f\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left(-f\left(y_{i}\right)\right)\right]+1
\end{aligned}
$$

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Empirical properties of KALE

$$
\begin{aligned}
K A L E(P, Q ; \mathcal{H}) & =\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f & =\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS } \\
\|w\|_{\mathcal{H}}^{2} & \text { penalized : }
\end{aligned}
$$

Empirical properties of KALE

$$
\begin{gathered}
K A L E(P, Q ; \mathcal{H})=\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS } \\
\|w\|_{\mathcal{H}}^{2} \quad \text { penalized }: \text { KALE smoothie }
\end{gathered}
$$

Empirical properties of KALE

$$
\begin{gathered}
K A L E(P, Q ; \mathcal{H})=\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS } \\
\|w\|_{\mathcal{H}}^{2} \quad \text { penalized }: \text { KALE smoothie } \\
K A L E(Q, P: \mathcal{H})=0.18
\end{gathered}
$$

Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS, 2021, Section 2)

Empirical properties of KALE

$$
\begin{gathered}
\operatorname{KALE}(P, Q ; \mathcal{H})=\sup _{f \in \mathcal{H}}-E_{P} f(X)-E_{Q} \exp (-f(Y))+1 \\
f=\langle w, \phi(x)\rangle_{\mathcal{H}} \quad \mathcal{H} \text { an RKHS } \\
\|w\|_{\mathcal{H}}^{2} \quad \text { penalized }: \text { KALE smoothie } \\
K A L E(Q, P: \mathcal{H})=0.12
\end{gathered}
$$

Glaser, Arbel, G. "KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support," (NeurIPS, 2021, Section 2)

The KALE smoothie and "mode collapse"

- Two Gaussians with same means, different variance

Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X} :

- Compact domain \mathcal{X},
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\|\cdot\|_{\infty}$.
\square If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $c f \in \mathcal{H}$ for $0 \leq c \leq C_{\text {max }}$.
Theorem: $\operatorname{KALE}(P, Q ; \mathcal{H}) \geq 0$ and $\operatorname{KALE}(P, Q ; \mathcal{H})=0$ iff $P=Q$.

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs"
(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (1)

Key requirements on \mathcal{H} and \mathcal{X} :

- Compact domain \mathcal{X},
- \mathcal{H} dense in the space $C(\mathcal{X})$ of continuous functions on \mathcal{X} wrt $\|\cdot\|_{\infty}$.
\square If $f \in \mathcal{H}$ then $-f \in \mathcal{H}$ and $c f \in \mathcal{H}$ for $0 \leq c \leq C_{\text {max }}$.
Theorem: $\operatorname{KALE}(P, Q ; \mathcal{H}) \geq 0$ and $\operatorname{KALE}(P, Q ; \mathcal{H})=0$ iff $P=Q$.
\mathcal{H} dense in $C(\mathcal{X})$ for $\mathcal{X} \subset \mathbb{R}^{d}$ when:

$$
\mathcal{H}=\operatorname{span}\{\sigma(w \top x+b):[w, b] \in \Theta\}
$$

$\sigma(u)=\max \{u, 0\}^{\alpha}, \alpha \in \mathbb{N}$, and $\{\lambda \theta: \lambda \geq 0, \theta \in \Theta\}=\mathbb{R}^{d+1}$.

Zhang, Liu, Zhou, Xu, and He. "On the Discrimination-Generalization Tradeoff in GANs"
(ICLR 2018, Corollary 2.4; Theorem B.1)
Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $\operatorname{KALE}\left(P, Q^{n} ; \mathcal{H}\right) \rightarrow 0$ iff $Q^{n} \rightarrow P$ under the weak topology.

Liu, Bousquet, Chaudhuri. "Approximation and Convergence Properties of Generative Adversarial Learning" (NeurIPS 2017); Arbel, Liang, G. (ICLR 2021, Proposition 1)

Topological properties of KALE (2)

Additional requirement: all functions in \mathcal{H} Lipschitz in their inputs with constant L

Theorem: $\operatorname{KALE}\left(P, Q^{n} ; \mathcal{H}\right) \rightarrow 0$ iff $Q^{n} \rightarrow P$ under the weak topology.

Partial proof idea:

$$
\begin{aligned}
\operatorname{KALE}(P, Q ; \mathcal{H})= & -\int f d P-\int \exp (-f) d Q+1 \\
= & \int f(x) d Q(x)-f\left(x^{\prime}\right) d P\left(x^{\prime}\right) \\
& -\int \underbrace{(\exp (-f)+f-1)}_{\geq 0} d Q \\
\leq & \int f(x) d Q(x)-f\left(x^{\prime}\right) d P\left(x^{\prime}\right) \leq L W_{1}(P, Q)
\end{aligned}
$$

How to train your GAN
 Generalized Energy-Based Model

Visual notation: GAN setting

Visual notation: GAN setting

Reminder: the generator

Radford, Metz, Chintala, ICLR 2016

Energy function to improve generator: demo

Target distribution P

Energy function to improve generator: demo

GAN (generator) Q_{θ}, correct support but wrong mass

Example thanks to M. Arbel

Energy function to improve generator: demo
Log energy function and Q_{θ}

Key:
■ Orange: increase mass
■ Blue: reduce mass

Energy function to improve generator: demo

Target distribution P and GAN (generator) Q_{θ}, wrong support and wrong mass

Example thanks to M. Arbel

Energy function to improve generator: demo
Log energy function, P, and Q_{θ}

Key:
■ Orange: increase weight
■ Blue: reduce weight

Generalized energy-based models

Define a model $Q_{B_{\theta}, E}$ as follows:

- Sample from generator with parameters θ

$$
X \sim Q_{\theta} \quad \Longleftrightarrow \quad X=B_{\theta}(Z), \quad Z \sim \eta
$$

■ Reweight the samples according to importance weights:

$$
f_{Q, E}(x)=\frac{\exp (-E(x))}{Z_{Q_{\theta}, E}}, \quad Z_{Q, E}=\int \exp (-E(x)) d Q_{\theta}(x),
$$

where $E \in \mathcal{E}$, the energy function class.

```
fQ,E}(x)\mathrm{ is Radon-Nikodym derivative of }\mp@subsup{Q}{\mp@subsup{B}{0}{},E}{}\mathrm{ wrt }\mp@subsup{Q}{0}{}\mathrm{ .
```

■ When Q_{θ} has density wrt Lebesgue on \mathcal{X}, this is a standard energy-based model.

How do we learn the energy E ?

How do we learn the energy E ?

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log Z_{Q, E}
$$

■ When $K L\left(P, Q_{\theta}\right)$ well defined, above is Donsker-Varadhan lower bound on KL

- tight when $E(z)=-\log (p(z) / q(z))$.

■ However, Generalized Log-Likelihood still defined when P and Q_{θ} mutually singular (as long as E smooth)!

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.
Generalized Log-Likelihood has the lower bound:

$$
\begin{aligned}
\mathcal{L}_{P, Q}(E) & \geq-\int(E+c) d P-\int \exp (-E-c) d Q_{\theta}+1 \\
& :=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)
\end{aligned}
$$

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.
Generalized Log-Likelihood has the lower bound:

$$
\begin{aligned}
\mathcal{L}_{P, Q}(E) & \geq-\int(E+c) d P-\int \exp (-E-c) d Q_{\theta}+1 \\
& :=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)
\end{aligned}
$$

This is the KALE! with function class $\mathcal{E}+\mathbb{R}$.

KALE and the energy function

Fit the model using Generalized Log-Likelihood:

$$
\mathcal{L}_{P, Q}(E):=\int \log \left(f_{Q, E}\right) d P=-\int E d P-\log \int \exp (-E) d Q_{\theta}
$$

One last trick...(convexity of exponential)

$$
-\log \int \exp (-E) d Q_{\theta} \geq-c-e^{-c} \int \exp (-E) d Q_{\theta}+1
$$

tight whenever $c=\log \int \exp (-E) d Q_{\theta}$.
Generalized Log-Likelihood has the lower bound:

$$
\begin{aligned}
\mathcal{L}_{P, Q}(E) & \geq-\int(E+c) d P-\int \exp (-E-c) d Q_{\theta}+1 \\
& :=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)
\end{aligned}
$$

Jointly maximizing yields the maximum likelihood energy E^{*} and corresponding $c^{*}=\log \int \exp (-E) d Q_{\theta}$.

Training the base measure (generator)

Recall the generator:

$$
X=B_{\theta}(Z), \quad Z \sim \eta
$$

Define: $\mathcal{K}(\theta):=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)$

Training the base measure (generator)

Recall the generator:

$$
X=B_{\theta}(Z), \quad Z \sim \eta
$$

Define: $\mathcal{K}(\theta):=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)$
Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with:

$$
\nabla \mathcal{K}(\theta)=Z_{Q, E^{*}}^{-1} \int \nabla_{x} E^{*}\left(B_{\theta}(z)\right) \nabla_{\theta} B_{\theta}(z) \exp \left(-E^{*}\left(B_{\theta}(z)\right)\right) \eta(z) d z
$$

where E^{*} achieves supremum in $\mathcal{F}(P, Q ; \mathcal{E}+\mathbb{R})$.

Training the base measure (generator)

Recall the generator:

$$
X=B_{\theta}(Z), \quad Z \sim \eta
$$

Define: $\mathcal{K}(\theta):=\mathcal{F}\left(P, Q_{\theta} ; \mathcal{E}+\mathbb{R}\right)$
Theorem: \mathcal{K} is lipschitz and differentiable for almost all $\theta \in \Theta$ with:

$$
\nabla \mathcal{K}(\theta)=Z_{Q, E^{*}}^{-1} \int \nabla_{x} E^{*}\left(B_{\theta}(z)\right) \nabla_{\theta} B_{\theta}(z) \exp \left(-E^{*}\left(B_{\theta}(z)\right)\right) \eta(z) d z
$$

where E^{*} achieves supremum in $\mathcal{F}(P, Q ; \mathcal{E}+\mathbb{R})$.
Assumptions:
$■$ Functions in \mathcal{E} parametrized by $\psi \in \Psi$, where Ψ compact,

- jointly continous w.r.t. $(\psi, x), L$-lipschitz and L-smooth w.r.t. x.
$\square(\theta, z) \mapsto B_{\theta}(z)$ jointly continuous wrt $(\theta, z), z \mapsto B_{\theta}(z)$ uniformly Lipschitz w.r.t. z, lipschitz and smooth wrt θ (see paper: constants depend on z)

Sampling from the model

Consider end-to-end model $Q_{B_{\theta}, E}$, where recall that $X=B_{\theta}(Z), \quad Z \sim \eta$,

$$
f_{B, E}(x):=\frac{\exp (-E(x))}{Z_{Q, E}}
$$

Sampling from the model

Consider end-to-end model $Q_{B_{\theta}, E}$, where recall that $X=B_{\theta}(Z), \quad Z \sim \eta$,

$$
f_{B, E}(x):=\frac{\exp (-E(x))}{Z_{Q, E}}
$$

For a test function g,

$$
\int g(x) d Q_{B, E}(x)=\int g(B(z)) f_{B, E}(B(z)) \eta(z) d z
$$

Posterior latent distribution therefore

$$
\nu_{B, E}(z)=\eta(z) f_{B, E}(B(z))
$$

Sampling from the model

Consider end-to-end model $Q_{B_{\theta}, E}$, where recall that $X=B_{\theta}(Z), \quad Z \sim \eta$,

$$
f_{B, E}(x):=\frac{\exp (-E(x))}{Z_{Q, E}}
$$

For a test function g,

$$
\int g(x) d Q_{B, E}(x)=\int g(B(z)) f_{B, E}(B(z)) \eta(z) d z
$$

Posterior latent distribution therefore

$$
\nu_{B, E}(z)=\eta(z) f_{B, E}(B(z))
$$

Sample $z \sim \nu_{B, E}$ via Langevin diffusion-derived algorithms (MALA, ULA, HMC,...) to exploit gradient information.
Generate new samples in \mathcal{X} via

$$
X \sim Q_{B, E} \quad \Longleftrightarrow \quad Z \sim \nu_{B, E}, \quad X=B_{\theta}(Z)
$$

Experiments

Examples: sampling at modes

Tempered GEBM Cifar10 samples at different stages of sampling using a Kinetic Langevin Algorithm (KLA). Early samples \rightarrow late samples. Model run at low temperature $(\beta=100)$ for better quality samples.

Sampling at modes: results

The relative FID score: $\frac{\operatorname{FID}\left(Q_{B_{\theta}, E}\right)}{\operatorname{FID}\left(B_{\theta}\right)}$

For a given generator B_{θ} and energy E, samples always better (FID score) than generator alone.

Examples: moving between modes

Tempered GEBM Cifar10 samples at different stages of sampling using KLA. Early samples \rightarrow late samples.
Model run at lower friction (but still low temperature, $\beta=100$) for mode exploration.

Summary

■ Generalized energy based model:

- End-to-end model incorporating generator and critic
- Always better samples than generator alone.

■ ICLR 2021
https://github.com/MichaelArbel/GeneralizedEBM
arXiv.org > stat > arXiv:2003.05033
Statistics > Machine Learning
[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v33)]
Generalized Energy Based Models
Michael Arbel, Liang Zhou, Arthur Gretton

Summary

- Generalized energy based model:
- End-to-end model incorporating generator and critic
- Always better samples than generator alone.

■ ICLR 2021

https://github.com/MichaelArbel/GeneralizedEBM

arXiv.org > stat > arXiv:2003.05033

Statistics > Machine Learning
[Submitted on 10 Mar 2020 (v1), last revised 24 Jun 2020 (this version, v3)]
Generalized Energy Based Models
Michael Arbel, Liang Zhou, Arthur Gretton

NeurIPS 2020:

arXiv.org > cs > arXiv:2003.06060
Computer Science > Machine Learning
[Submitted on 12 Mar 2020 (v1), fast revised 24 Mar 2020 (this version, v2)]
Your GAN is Secretly an Energy-based Model
and You Should use Discriminator Driven
Latent Sampling
Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle,
Liam Paull, Yuan Cao, Yoshua Bengio

ICLR 2021:

ICLR 2021:

arXiv.org > cs > arXiv:2010.00654
Computer Science > Machine Learning
[Submitred on 1 Oct 2020 (1)), last revised 9 Feb 2021 (sthis version, v21]
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao, Karsten Kreis, Jan Kautz, Arash Vahdat

Questions?

Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

M Mhad Arbel
Geing Compitational Nenoncience Jmit
Undwenity Collegs London
mehanl in.arbeldgmanl. oun

AdII Fillm
Vmal Compiting Cantr
KAฟ゙ST
afll.Ealinframstiedr.en

Anna Korba

Gathe Compotional Namencians Wmit
Wntvarity College Lonion
A. morbatucl , ace . tif

Anther Grepton
Gaing Compitafional Naromiace Џnit
Wnivarity Pollege Lonion

Sanity check: reduction to EBM case

