Interpretable comparison of distributions and models

Arthur Gretton, Dougal Sutherland, Wittawat Jitkrittum

Gatsby Unit UCL, TTI-Chicago \rightarrow UBC, MPI for Intelligent Systems

NeurIPS, Vancouver, 2019

A motivation: comparing two samples

Given: Samples from unknown distributions P and Q.
Goal: do P and Q differ?

A motivation: comparing a sample and a model

Given: Sample from unknown Q, model P
Goal: do P and Q differ?

A real-life example: two-sample tests

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- **Goal:** do P and Q differ?

MNIST samples

Samples from a GAN

Significant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016 Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.

Outline

Divergence measures

- Integral probability metrics
- ϕ -divergences (f-divergences)

Statistical hypothesis testing

- Using integral probability metrics
- Learned features for powerful tests
- Relation of testing and classification

Linear-time features and model criticism

- Interpretable, linear time features for testing
- Stein's method for model evaluation

Divergence measures

Divergences

Divergences: integral probability metrics

Are P and Q different?

Are P and Q different?

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{||f||\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \varphi_1(x) & \uparrow & \uparrow \\ \varphi_2(x) & \uparrow & \uparrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \vdots & \downarrow \end{bmatrix}$$
$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \le 1$$

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$arphi(x) = [\dots arphi_i(x) \dots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x-x'
ight\|^2
ight)$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 15/34

Feature map $\varphi(x) \in \mathcal{F}$,

$$\varphi(x) = [\dots \varphi_i(x) \dots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

For characteristic RKHS \mathcal{F} , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002] Bounded varation 1 (Kolmogorov metric) [Müller, 1997] Lipschitz (Wasserstein distances) [Dudley, 2002]

Energy distance is a special case [Sejdinovic, Sriperumbudur, G. Fukumizu, 2013] 16/34

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Expectations of functions are linear combinations of expected features

$$\mathbf{E}_{P}(f(X)) = \langle f, \mathbf{E}_{P} arphi(X)
angle_{\mathcal{F}} = \langle f, oldsymbol{\mu}_{P}
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

The MMD:

 $egin{aligned} & MMD(P, \, oldsymbol{Q}; \, F) \ &= \sup_{\| f \| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(\, Y)
ight] \end{aligned}$

The MMD:

use

MMD(P, Q; F)

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_{P} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} ig\langle f, \mu_P \mu_Q ig
 angle_{\mathcal{F}}$

 $\mathbf{E}_{P}f(X) = \langle \boldsymbol{\mu}_{P}, f \rangle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_{P} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

 $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_{P} f(X) - \mathbf{E}_{\mathcal{Q}} f(Y)
ight]$

$$= \sup_{\|f\|\leq 1} \langle f, \mu_P - \mu_Q
angle_{\mathcal{F}}$$

The MMD:

- MMD(P, Q; F)
- $= \sup_{\|f\|\leq 1} \left[\mathrm{E}_{P} f(X) \mathrm{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$
- $= \|\mu_P \mu_Q\|$

IPM view equivalent to feature mean difference (kernel case only)

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v)=\left\langle f^*,arphi(v)
ight
angle_{\mathcal{F}}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} &f^*(v) = \langle f^*, arphi(v)
angle_\mathcal{F} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_{\mathcal{Q}}, arphi(v)
angle_\mathcal{F} \end{aligned}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, arphi(v)
angle_{\mathcal{F}} \ &= rac{1}{n} \sum_{i=1}^n k(oldsymbol{x}_i, v) - rac{1}{n} \sum_{i=1}^n k(oldsymbol{y}_i, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$

19/34

IPMs in practice

How do the IPMs behave?

• A simple setting: distributions with disjoint support, Q approaches P

How do the IPMs behave?

• A simple setting: distributions with disjoint support, Q approaches P

How does the Wasserstein-1 behave?

$$W_1(P, oldsymbol{Q}) = \sup_{\|f\|_L \leq 1} E_P f(X) - E_oldsymbol{Q} f(Y). \ \|f\|_L \coloneqq \sup_{x
eq y} |f(x) - f(y)| / \|x - y\|$$

 $W_1 = 0.88$

M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

How does the Wasserstein-1 behave?

$$W_1(P, oldsymbol{Q}) = \sup_{\|f\|_L \leq 1} E_P f(X) - E_oldsymbol{Q} f(Y). \ \|f\|_L \coloneqq \sup_{x
eq y} |f(x) - f(y)| / \|x - y\|$$

 $W_1 = 0.65$

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)G Peyré, M Cuturi, Computational Optimal Transport (2019)M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

MMD with a broad kernel: $MMD(P, Q) = \sup_{||f||_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y).$

MMD=1.8

MMD with a broad kernel:: $MMD(P, Q) = \sup_{||f||_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y)$

MMD=1.1

MMD(P, Q) with a narrow kernel.

MMD=0.64

MMD(P, Q) with a narrow kernel.

MMD=0.64

The ϕ -divergences

The ϕ -divergences

Define the ϕ -divergence(*f*-divergence):

$$D_{\phi}(P,Q) = \int \phi\left(rac{dP}{dQ}
ight) dQ = \int \phi\left(rac{p(x)}{q(x)}
ight) q(x) dx$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(x) = -\log(x)$ gives reverse KL divergence,

$$D_{KL}(oldsymbol{Q},P) = \int \log\left(rac{q(x)}{p(x)}
ight) \, q(x) dx$$

The ϕ -divergences

Define the ϕ -divergence(*f*-divergence):

$$D_{\phi}(P,Q) = \int \phi\left(rac{d\,P}{d\,Q}
ight) \, d\,Q = \int \phi\left(rac{p(x)}{q(x)}
ight) \, q(x) dx$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(x) = -\log(x)$ gives reverse KL divergence,

$$D_{KL}(oldsymbol{Q},P) = \int \log\left(rac{oldsymbol{q}(x)}{p(x)}
ight) oldsymbol{q}(x) dx$$

How do ϕ -divergences behave?

Simple example: disjoint support, revisited.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

How do ϕ -divergences behave?

Simple example: disjoint support, revisited.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Case of the reverse KL

$$D_{KL}(oldsymbol{Q},P) = \int oldsymbol{q}(z) \log\left(rac{oldsymbol{q}(z)}{oldsymbol{p}(z)}
ight) dz$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},oldsymbol{P}) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{oldsymbol{p}(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_{P}f(X) + \mathbf{E}_{oldsymbol{Q}} \underbrace{\log\left(-f(oldsymbol{Y})
ight) + 1}_{-\phi^*(f(oldsymbol{Y}))} \end{aligned}$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 27/34 Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{oldsymbol{p}(z)}
ight) dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_oldsymbol{Q}\log\left(-f(oldsymbol{Y})
ight) + 1 \end{aligned}$$

Bound tight when:

$$f^\diamond(z) = -rac{m{q}(z)}{m{p}(z)}$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 27/34 Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{q(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_{oldsymbol{Q}}\log\left(-f(Y)
ight) + 1 & x_i \stackrel{ ext{i.i.d.}}{\sim} P \ &y_i \stackrel{ ext{i.i.d.}}{\sim} Q \ &lpha \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(y_i))
ight] + 1 \end{aligned}$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 27/34 Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the reverse KL

$$egin{split} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_oldsymbol{Q}\log\left(-f(oldsymbol{Y})
ight) + 1 \ &pprox \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(y_i))
ight] + 1 \end{split}$$

This is a

 $\mathbf{K}\mathbf{L}$

Approximate

Lower-bound

Estimator.

Case of the reverse KL

$$egin{split} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_{oldsymbol{Q}}\log\left(-f(oldsymbol{Y})
ight) + 1 \ &pprox \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(y_i))
ight] + 1 \end{split}$$

This is a

 \mathbf{K}

 \mathbf{A}

 \mathbf{L}

 \mathbf{E}

Case of the reverse KL

$$egin{split} D_{KL}(oldsymbol{Q},oldsymbol{P}) &= \int oldsymbol{q}(z)\log\left(rac{q(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_{P}f(X) + \mathbf{E}_{oldsymbol{Q}}\log\left(-f(oldsymbol{Y})
ight) + 1 \ &pprox \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^{n}f(x_{i}) + rac{1}{n}\sum_{i=1}^{n}\log(-f(oldsymbol{y}_{i}))
ight] + 1 \end{split}$$

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 27/34 Nowozin, Cseke, Tomioka, NeurIPS (2016)

$$egin{aligned} & ext{KALE}(oldsymbol{Q}, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_oldsymbol{Q} \log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized} : \end{aligned}$$

$$egin{aligned} & ext{KALE}(oldsymbol{Q}, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_oldsymbol{Q} \log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized} : ext{KALE smoothie} \end{aligned}$$

$$egin{aligned} & \operatorname{KALE}(\mathcal{Q}, \mathcal{P}) = \sup_{f < 0, f \in \mathcal{H}} E_{\mathcal{P}}f(X) + E_{\mathcal{Q}}\log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x) \right\rangle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized} : \operatorname{KALE} \operatorname{smoothie} \ & \operatorname{KALE}(\mathcal{Q}, \mathcal{P}) = 0.18 \end{aligned}$$

$$egin{aligned} & \operatorname{KALE}(\mathcal{Q}, \mathcal{P}) = \sup_{f < 0, f \in \mathcal{H}} E_{\mathcal{P}}f(X) + E_{\mathcal{Q}}\log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized}: \operatorname{KALE} \operatorname{smoothie} \ & \operatorname{KALE}(\mathcal{Q}, \mathcal{P}) = 0.12 \end{aligned}$$

The KALE smoothie and "mode collapse"

Two Gaussians with same means, different variance

WAE-GAN Kale and WAE-MMD

The Wasserstein Autoencoder:

Tolstikhin, Bousquet, Gelly, Schölkopf (2018). New version with parameter sweep from 2019: see arxiv.

WAE-GAN Kale and WAE-MMD

The Wasserstein Autoencoder:

Celeb-A performance (FID):

- WAE-MMD: 37
- WAE-GAN: 35
- Variational autoencoder: 45

WAE-GAN Kale and WAE-MMD

The Wasserstein Autoencoder:

FID Distribution for CelebA

Sweep over: architectures of the Encoder and Decoder (DCGAN or ResNet50v2), regularization coefficient, learning rates, kernel width,...Parameters in both in WAE-MMD and WAE-GAN (i.e. 31/34 learning rate, regularization coeff, etc) had the same ranges for both.

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

References and further reading

Wasserstein distances:

- Peyré, Cuturi. Computational Optimal Transport (2019)
- Santambrogio. Optimal Transport for Applied Mathematicians (2015)

■ The Maximum Mean Discrepancy:

- Gretton, Borgwardt, Rasch. Schölkopf, Smola. A kernel two-sample test. (2012)
- Arbel, Sutherland, Binkowski, Gretton. Gradient regularization for MMD GANS (2018)

■ Variational estimates of *φ*-divergences:

- Nguyen, Wainwright, Jordan. Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization (2010)
- Nowozin, Cseke, Tomioka. F-GAN: Training Generative Neural Samplers using Variational Divergence Minimization (2016)

Divergences and generative models:

- Arora, Ge, Liang, Ma, Zhang. Generalization and Equilibrium in Generative Adversarial Nets (GANs) (2017)
- Tolstikhin, Bousquet, Gelly, Schölkopf. Wasserstein Auto-encoders (2019 version)
- Huang, Berard, Touati, Gidel, Vincent, Lacoste-Julien. Parametric Adversarial Divergences are Good Task Losses for Generative Modeling (2018)
- Bottou, Arjovsky, Lopez-Paz, Oquab. Geometrical Insights for Implicit Generative Modeling (2018)

Bound for Jensen-shannon

Case of the Jensen Shannon divergence

$$egin{split} D_{JS}(oldsymbol{Q},P)\ &=rac{1}{2}\int p(z)\log\left(rac{2p(z)}{p(z)+q(z)}
ight)dz+rac{1}{2}\int q(z)\log\left(rac{2q(z)}{p(z)+q(z)}
ight)dz \end{split}$$

Bound for Jensen-shannon

Case of the Jensen Shannon divergence

$$egin{split} D_{JS}(oldsymbol{Q},oldsymbol{P})\ &=rac{1}{2}\int p(z)\log\left(rac{2p(z)}{p(z)+q(z)}
ight)dz+rac{1}{2}\int q(z)\log\left(rac{2q(z)}{p(z)+q(z)}
ight)dz\ &\geq \sup_{f<0,f\in\mathcal{H}}\left\{\mathbf{E}_{P}f(X)\ &-\mathbf{E}_{oldsymbol{Q}}\left[-(f(oldsymbol{Y})+1)\log\left(rac{f(oldsymbol{Y})+1}{2}
ight)+f(oldsymbol{Y})\log f(oldsymbol{Y})
ight]
ight\} \end{split}$$

Bound for Jensen-shannon

Case of the Jensen Shannon divergence

$$egin{aligned} D_{JS}(oldsymbol{Q},P) \ &=rac{1}{2}\int p(z)\log\left(rac{2p(z)}{p(z)+q(z)}
ight)dz+rac{1}{2}\int q(z)\log\left(rac{2q(z)}{p(z)+q(z)}
ight)dz \ &\geq \sup_{f<0,f\in\mathcal{H}}\left\{\mathbf{E}_{P}f(X)\ &-\mathbf{E}_{oldsymbol{Q}}\left[-(f(Y)+1)\log\left(rac{f(Y)+1}{2}
ight)+f(Y)\log f(Y)
ight]
ight\} \end{aligned}$$

Bound tight when:

$$f^{\circ}(z) = \log\left(rac{2p(x)}{p(x)+q(x)}
ight)$$