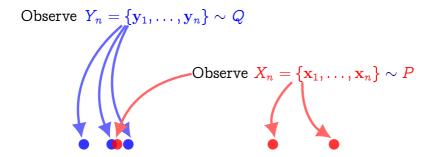
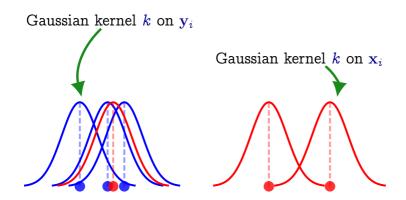
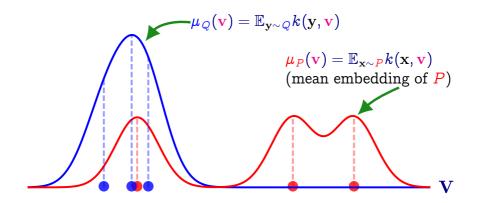
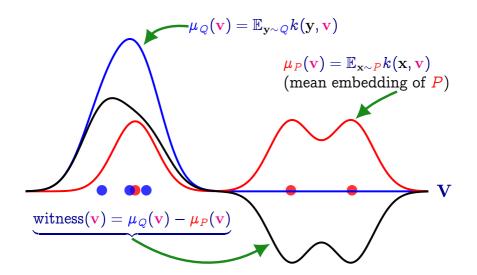
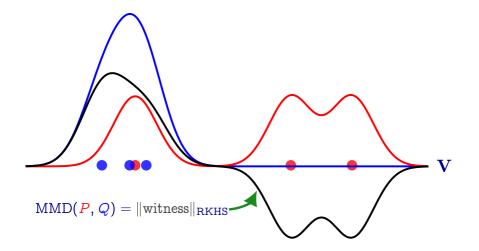
Linear-time, interpretable two-sample test



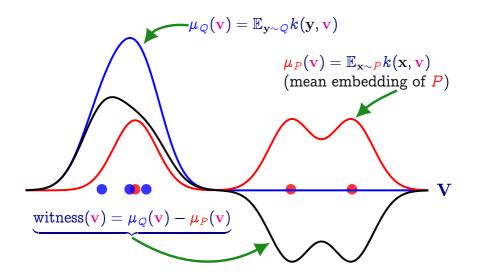




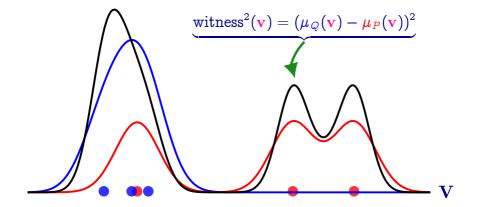




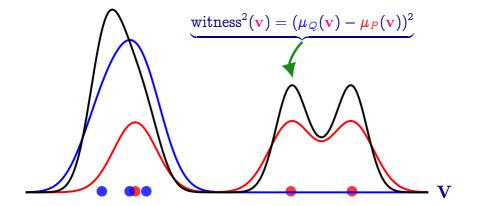
The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)



The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)



The Unnormalized Mean Embeddings statistic (Chwialkowski et al., 2015)



Given J test locations $V := \{\mathbf{v}_j\}_{j=1}^J$, (V gives interpretability later)

$$extsf{UME}^2(extsf{P}, extsf{Q}) = rac{1}{J} \sum_{j=1}^J [\mu_P(extsf{v}_j) - \mu_Q(extsf{v}_j)]^2.$$

The Unnormalized Mean Embeddings (UME) statistic

$$\mathsf{UME}^2({m P},Q) = rac{1}{J}\sum_{j=1}^J [\mu_P(\mathbf{v}_j)-\mu_Q(\mathbf{v}_j)]^2 = rac{1}{J}\sum_{j=1}^J \mathrm{witness}^2(\mathbf{v}_j).$$

Proposition (Chwialkowski et al., NeurIPS 2015)

Main assumptions:

- 1 Nice kernel k (characteristic, real analytic).
- 2 $\{\mathbf{v}_j\}_{j=1}^J$ drawn from a distribution that covers the whole domain.

 $UME^2(P, Q) = 0$ iff P = Q.

Key: Evaluating witness² is enough to detect the difference.
 Runtime complexity: O(Jn). J is constant.

The Unnormalized Mean Embeddings (UME) statistic

$$\mathsf{UME}^2({m P},Q) = rac{1}{J}\sum_{j=1}^J [\mu_P(\mathbf{v}_j)-\mu_Q(\mathbf{v}_j)]^2 = rac{1}{J}\sum_{j=1}^J \mathrm{witness}^2(\mathbf{v}_j).$$

Proposition (Chwialkowski et al., NeurIPS 2015)

Main assumptions:

- 1 Nice kernel k (characteristic, real analytic).
- 2 $\{\mathbf{v}_j\}_{j=1}^J$ drawn from a distribution that covers the whole domain.

 $UME^2(P, Q) = 0$ iff P = Q.

- Key: Evaluating witness² is enough to detect the difference.
- **Runtime complexity:** $\mathcal{O}(Jn)$. J is constant.

• Null distribution P_{H_0} of UME is complicated.

• Weighted sum of correlated chi-squares. No closed form.

Idea: decorrelate the J terms in the sum.

 $\mathrm{UME}^2({\it P},{\it Q}) = \mathbf{t}^ op \mathbf{t}$ where $\mathbf{t} \in \mathbb{R}^J$

Normalized ME (NME)

 $\mathrm{NME}^2(P,Q) = \mathbf{t}^\top \mathbf{C}^{-1} \mathbf{t}$

where C = covariance of the J terms ($J \times J$ matrix).

t, C depend on samples from P, Q and test locations {v_j}^J_{j=1}.
 Runtime complexity: O(J³ + J²n + Jdn). Linear in n.

• Null distribution P_{H_0} of UME is complicated.

• Weighted sum of correlated chi-squares. No closed form.

■ Idea: decorrelate the *J* terms in the sum.

 $\mathrm{UME}^2(\pmb{P},\pmb{Q}) = \mathbf{t}^ op \mathbf{t}$ where $\mathbf{t} \in \mathbb{R}^J$

Normalized ME (NME)

 $\mathrm{NME}^2(\boldsymbol{P},\boldsymbol{Q}) = \mathbf{t}^\top \mathbf{C}^{-1} \mathbf{t}$

where C = covariance of the J terms $(J \times J \text{ matrix})$.

• **t**, **C** depend on samples from P, Q and test locations $\{\mathbf{v}_j\}_{j=1}^J$.

5/25

• Null distribution P_{H_0} of UME is complicated.

• Weighted sum of correlated chi-squares. No closed form.

■ Idea: decorrelate the *J* terms in the sum.

 $\text{UME}^2(P, Q) = \mathbf{t}^\top \mathbf{t}$ where $\mathbf{t} \in \mathbb{R}^J$

Normalized ME (NME)

 $\mathrm{NME}^2(\boldsymbol{P},\boldsymbol{Q}) = \mathbf{t}^\top \mathbf{C}^{-1} \mathbf{t}$

where C = covariance of the J terms $(J \times J matrix)$.

t, **C** depend on samples from P, Q and test locations $\{\mathbf{v}_j\}_{j=1}^J$.

Runtime complexity: $\mathcal{O}(J^3 + J^2n + Jdn)$. Linear in n.

• Null distribution P_{H_0} of UME is complicated.

• Weighted sum of correlated chi-squares. No closed form.

■ Idea: decorrelate the *J* terms in the sum.

 $\text{UME}^2(P, Q) = \mathbf{t}^\top \mathbf{t} \text{ where } \mathbf{t} \in \mathbb{R}^J$

Normalized ME (NME)

 $\mathrm{NME}^{2}(\boldsymbol{P},\boldsymbol{Q}) = \mathbf{t}^{\top}\mathbf{C}^{-1}\mathbf{t}$

where $\mathbf{C} = \text{covariance of the } J \text{ terms } (J \times J \text{ matrix}).$

• t, C depend on samples from P, Q and test locations $\{\mathbf{v}_j\}_{j=1}^J$.

Runtime complexity: $\mathcal{O}(J^3 + J^2n + Jdn)$. Linear in n.

• Null distribution P_{H_0} of UME is complicated.

• Weighted sum of correlated chi-squares. No closed form.

■ Idea: decorrelate the *J* terms in the sum.

 $\text{UME}^2(P, Q) = \mathbf{t}^\top \mathbf{t} \text{ where } \mathbf{t} \in \mathbb{R}^J$

Normalized ME (NME)

 $\mathrm{NME}^{2}(\boldsymbol{P},\boldsymbol{Q}) = \mathbf{t}^{\top}\mathbf{C}^{-1}\mathbf{t}$

where $\mathbf{C} = \text{covariance of the } J \text{ terms } (J \times J \text{ matrix}).$

- t, C depend on samples from P, Q and test locations $\{v_j\}_{j=1}^J$.
- Runtime complexity: $\mathcal{O}(J^3 + J^2n + Jdn)$. Linear in n.

Asymptotic distributions of NME

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

As sample size $n \to \infty$,

- 1 When P = Q, $nNME^2$ follows χ^2_J (chi-square).
- 2 When $P \neq Q$, the test power goes to 1.

Proposition (Jitkrittum et al., 2016) Choosing $\{v_j\}_{j=1}^J$ by maximizing \widehat{NME}^2 will maximize (a lower bound on) the test power. \bullet see lower bound

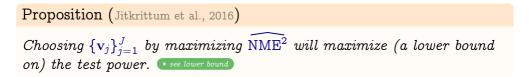
Optimized locations $\{\mathbf{v}_j\}_{j=1}^J$ are interpretable. Indicate where P, Q differ most.

Asymptotic distributions of NME

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

As sample size $n \to \infty$,

- 1 When P = Q, $nNME^2$ follows χ^2_J (chi-square).
- 2 When $P \neq Q$, the test power goes to 1.



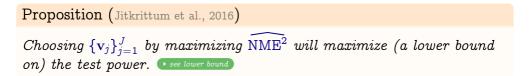
Optimized locations $\{\mathbf{v}_j\}_{j=1}^J$ are interpretable. Indicate where P, Q differ most.

Asymptotic distributions of NME

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

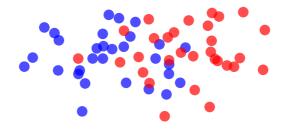
As sample size $n \to \infty$,

- 1 When P = Q, $nNME^2$ follows χ^2_J (chi-square).
- 2 When $P \neq Q$, the test power goes to 1.



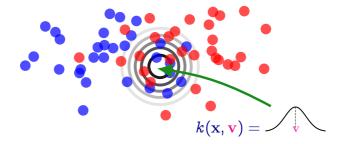
Optimized locations $\{\mathbf{v}_j\}_{j=1}^J$ are interpretable. Indicate where P, Q differ most.

• Use J = 1 location.



• Use J = 1 location. Let $score(\mathbf{v}) := NME^2$.

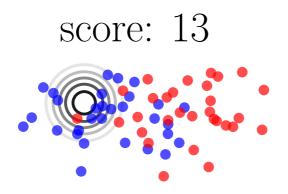
score: 0.008



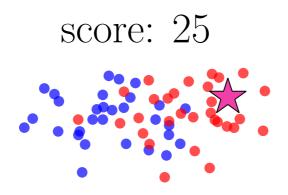
• Use J = 1 location. Let $score(v) := NME^2$.



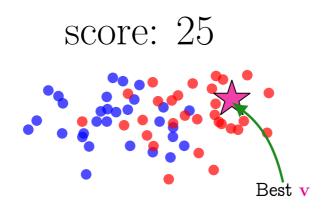
• Use J = 1 location. Let $score(v) := NME^2$.



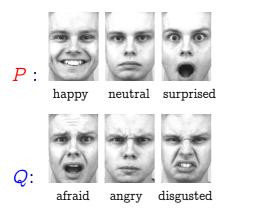
• Use J = 1 location. Let $score(\mathbf{v}) := NME^2$.



• Use J = 1 location. Let $score(\mathbf{v}) := NME^2$.



- **Best v** reveals where P and Q differ most.
- Maximizes the probability of detecting differences between P and Q.



- 35 females and 35 males (Lundqvist et al., 1998).
- 48 × 34 = 1632 dimensions. Pixel features.

■ *n* = 201.

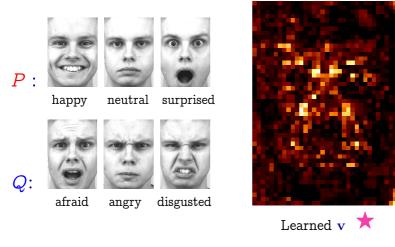
Test power comparable to the state-of-the-art MMD test.

Test power comparable to the state-of-the-art MMD test.

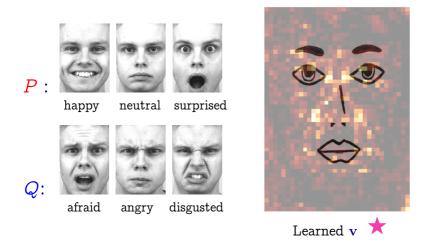


• Test power comparable to the state-of-the-art MMD test.

• Test power comparable to the state-of-the-art MMD test.

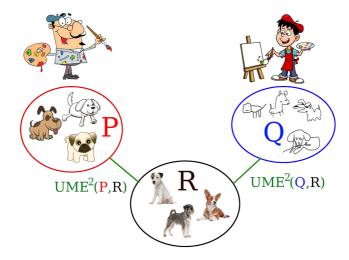


- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines.



- Test power comparable to the state-of-the-art MMD test.
- Informative features: differences at the nose, and smile lines.

Extension: model comparison by relative UME



- Both models P, Q can be wrong.
- Goal: pick the better one.

A model comparison test (Jitkrittum et al., 2018)

• P, Q: two candidate generative models that can be sampled.

• R: true distribution (unknown).

Observe $X_n \stackrel{i.i.d.}{\sim} P$, $Y_n \stackrel{i.i.d.}{\sim} Q$, and $Z_n \stackrel{i.i.d.}{\sim} R$. Three sets.

 $egin{aligned} H_0\colon \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R) &\leq 0\ H_1\colon \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R) &> 0 \end{aligned}$

Statistic: $\hat{S}_n = \widehat{\mathrm{UME}}_V^2(P,R) - \widehat{\mathrm{UME}}_V^2(Q,R)$. Reject H_0 if \hat{S}_n is too large.

> Optimize V by maximizing power of relative UME test. V shows where Q is better than P.

A model comparison test (Jitkrittum et al., 2018)

 \blacksquare P, Q : two candidate generative models that can be sampled.

• R: true distribution (unknown).

• Observe $X_n \stackrel{i.i.d.}{\sim} P$, $Y_n \stackrel{i.i.d.}{\sim} Q$, and $Z_n \stackrel{i.i.d.}{\sim} R$. Three sets.

 $egin{aligned} H_0\colon \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R) &\leq 0\ H_1\colon \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R) &> 0 \end{aligned}$

Statistic: $\hat{S}_n = \widehat{\mathrm{UME}}_V^2(P, R) - \widehat{\mathrm{UME}}_V^2(Q, R)$. Reject H_0 if \hat{S}_n is too large.

> Optimize V by maximizing power of relative UME test. V shows where Q is better than P.

A model comparison test (Jitkrittum et al., 2018)

 \blacksquare P, Q : two candidate generative models that can be sampled.

• R: true distribution (unknown).

• Observe $X_n \stackrel{i.i.d.}{\sim} P$, $Y_n \stackrel{i.i.d.}{\sim} Q$, and $Z_n \stackrel{i.i.d.}{\sim} R$. Three sets.

 $egin{aligned} H_0\colon \mathrm{UME}_V^2(\mathcal{P},R) - \mathrm{UME}_V^2(\mathcal{Q},R) &\leq 0 \ H_1\colon \mathrm{UME}_V^2(\mathcal{P},R) - \mathrm{UME}_V^2(\mathcal{Q},R) &> 0 \end{aligned}$

Statistic: $\hat{S}_n = \widehat{\mathrm{UME}}_V^2(P,R) - \widehat{\mathrm{UME}}_V^2(Q,R).$ Reject H_0 if \hat{S}_n is too large.

> Optimize V by maximizing power of relative UME test. V shows where Q is better than P.

A model comparison test (Jitkrittum et al., 2018)

 \blacksquare P, Q : two candidate generative models that can be sampled.

• R: true distribution (unknown).

• Observe $X_n \stackrel{i.i.d.}{\sim} P$, $Y_n \stackrel{i.i.d.}{\sim} Q$, and $Z_n \stackrel{i.i.d.}{\sim} R$. Three sets.

 $egin{aligned} H_0\colon \mathrm{UME}_V^2(oldsymbol{P},R) - \mathrm{UME}_V^2(oldsymbol{Q},R) &\leq 0 \ H_1\colon \mathrm{UME}_V^2(oldsymbol{P},R) - \mathrm{UME}_V^2(oldsymbol{Q},R) &> 0 \end{aligned}$

Statistic: \$\hfrac{S}_n = UME_V^2(P, R) - UME_V^2(Q, R)\$.
Reject \$H_0\$ if \$\hfrac{S}_n\$ is too large.

Optimize V by maximizing power of relative UME test. V shows where Q is better than P.

A model comparison test (Jitkrittum et al., 2018)

 \blacksquare P, Q : two candidate generative models that can be sampled.

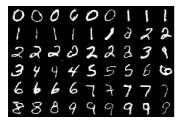
• R: true distribution (unknown).

• Observe $X_n \stackrel{i.i.d.}{\sim} P$, $Y_n \stackrel{i.i.d.}{\sim} Q$, and $Z_n \stackrel{i.i.d.}{\sim} R$. Three sets.

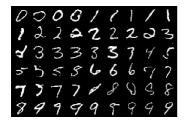
 $egin{aligned} H_0\colon \mathrm{UME}_V^2(oldsymbol{P},R) - \mathrm{UME}_V^2(Q,R) &\leq 0 \ H_1\colon \mathrm{UME}_V^2(oldsymbol{P},R) - \mathrm{UME}_V^2(Q,R) &> 0 \end{aligned}$

- Statistic: $\hat{S}_n = \widehat{\mathrm{UME}}_V^2(P, R) \widehat{\mathrm{UME}}_V^2(Q, R).$
- Reject H_0 if \hat{S}_n is too large.

Optimize V by maximizing power of relative UME test. V shows where Q is better than P.

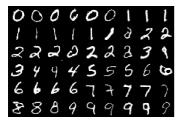


Q = LSGAN [Mao et al., 2017]

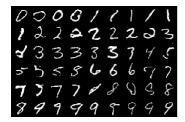


P = GAN[Goodfellow et al., 2014]

- R = real MNIST images.
- Set V = 40 (real) images of digit i = 0,...,9.
- Q is better at "1" and "5". P is slightly better at "3". Interpretable.

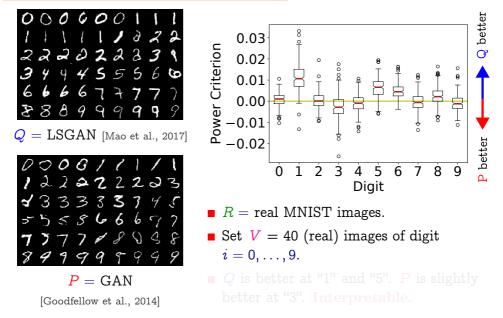


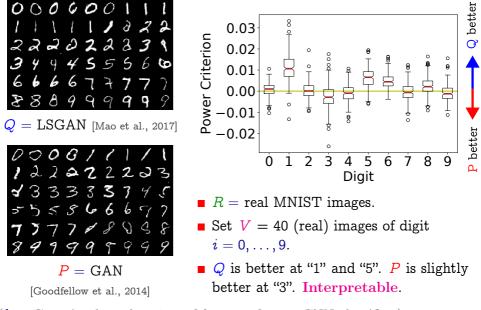
Q = LSGAN [Mao et al., 2017]



P = GAN[Goodfellow et al., 2014]

- R = real MNIST images.
- Set V = 40 (real) images of digit i = 0, ..., 9.
- Q is better at "1" and "5". P is slightly better at "3". Interpretable.

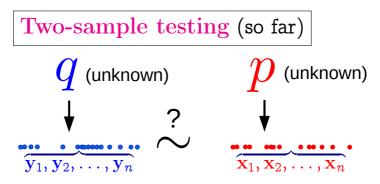




(k = Gaussian kernel on top of features from a CNN classifier.)

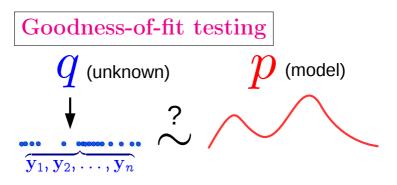
Testing Explicit Models with Kernel Stein Discrepancy

Goodness-of-fit Testing



Test goal: Do data follow the model p?

Goodness-of-fit Testing



Test goal: Do data follow the model p?

- p is an explicit density function known up to the normalizer e.g., a restricted Boltzmann machine.
- Important: no sample from *p*.

Recall the MMD (part 1)

Integral probability metric form of MMD:

 $\mathrm{MMD}(\boldsymbol{p}, q; \mathcal{F}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f],$

where $\mathcal{F} = \text{RKHS}$ defined by a kernel k.

Can we compute MMD with samples and a density p?

- **Problem 1:** usually can't compute $\mathbf{E}_p f$ in closed form.
- **Problem 2:** cannot sample from p. Also statistically inefficient.

Recall the MMD (part 1)

Integral probability metric form of MMD:

 $\mathrm{MMD}(\boldsymbol{p}, q; \mathcal{F}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_{\boldsymbol{p}} f],$

where $\mathcal{F} = \text{RKHS}$ defined by a kernel k.

Can we compute MMD with samples and a density p?

Problem 1: usually can't compute $\mathbf{E}_p f$ in closed form.

Problem 2: cannot sample from p. Also statistically inefficient.

Recall the MMD (part 1)

Integral probability metric form of MMD:

 $\mathrm{MMD}(\boldsymbol{p}, q; \mathcal{F}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_{\boldsymbol{p}} f],$

where $\mathcal{F} = \text{RKHS}$ defined by a kernel k.

Can we compute MMD with samples and a density p?

- **Problem 1:** usually can't compute $\mathbf{E}_p f$ in closed form.
- **Problem 2:** cannot sample from *p*. Also statistically inefficient.

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1}[\mathbf{E}_{q} \quad f-\mathbf{E}_{p} \quad f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_p T_p f = 0$ subject to appropriate boundary conditions.

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1} [\mathbf{E}_q \, T_p f - \mathbf{E}_p \, T_p f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = rac{1}{p(x)} rac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_{p} T_{p} f = 0$ subject to appropriate boundary conditions.

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1} [\mathbf{E}_q \, T_p f - \mathbf{E}_p \, T_p f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_{p}T_{p}f = 0$ subject to appropriate boundary conditions.

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1}[\mathbf{E}_{q}\,T_{p}f-\mathbf{E}_{p}\,T_{p}f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_p T_p f = 0$ subject to appropriate boundary conditions.

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1} [\mathbf{E}_q \, T_p f - \mathbf{E}_p \, T_p f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_p T_p f = 0$ subject to appropriate boundary conditions.

$$\begin{split} \mathbf{E}_{p}\left[T_{p}f\right] &= \int \left[\frac{1}{p(x)}\frac{d}{dx}\left(f(x)p(x)\right)\right]p(x)dx\\ &= \int \left[\frac{d}{dx}\left(f(x)p(x)\right)\right]dx\\ &= \left[f(x)p(x)\right]_{-\infty}^{\infty} = 0 \end{split}$$

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1} [\mathbf{E}_q \, T_p f - \mathbf{E}_p \, T_p f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_p T_p f = 0$ subject to appropriate boundary conditions.

$$\begin{split} \mathbf{E}_{p}\left[T_{p}f\right] &= \int \left[\frac{1}{p(x)} \frac{d}{dx} \left(f(x)p(x)\right)\right] \frac{p(x)}{dx} \\ &= \int \left[\frac{d}{dx} \left(f(x)p(x)\right)\right] dx \\ &= \left[f(x)p(x)\right]_{-\infty}^{\infty} = 0 \end{split}$$

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1} [\mathbf{E}_q \, T_p f - \mathbf{E}_p \, T_p f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_p T_p f = 0$ subject to appropriate boundary conditions.

$$\begin{split} \mathbf{E}_{p}\left[T_{p}f\right] &= \int \left[\frac{1}{p(x)} \frac{d}{dx} \left(f(x)p(x)\right)\right] \frac{p(x)}{dx} \\ &= \int \left[\frac{d}{dx} \left(f(x)p(x)\right)\right] dx \\ &= \left[f(x)p(x)\right]_{-\infty}^{\infty} = 0 \end{split}$$

To get rid of $\mathbf{E}_p f$ in

$$\sup_{\|f\|_{\mathcal{F}}\leq 1} [\mathbf{E}_q \, T_p f - \mathbf{E}_p \, T_p f],$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x)).$$

Then, $\mathbf{E}_p T_p f = 0$ subject to appropriate boundary conditions.

$$\begin{split} \mathbf{E}_{p}\left[T_{p}f\right] &= \int \left[\frac{1}{p(x)} \frac{d}{dx} \left(f(x)p(x)\right)\right] p(x) dx \\ &= \int \left[\frac{d}{dx} \left(f(x)p(x)\right)\right] dx \\ &= \left[f(x)p(x)\right]_{-\infty}^{\infty} = 0 \end{split}$$

• Stein operator:
$$T_p f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$
.

Kernel Stein Discrepancy (KSD)

$$ext{KSD}_{p}(q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_{q} T_{p} f - \mathbb{E}_{p} T_{p} f$$

where

$$g(v) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x},v)p(\mathbf{x})]
ight].$$

• Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

• Stein operator:
$$T_p f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$
.

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_p(q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q T_p f - \mathbb{E}_p T_p f$$

where

$$g(v) \coloneqq \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x},v)p(\mathbf{x})]
ight].$$

• Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

• Stein operator:
$$T_p f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$
.

Kernel Stein Discrepancy (KSD)

$$egin{aligned} \mathrm{KSD}_{p}(q) &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_{q} \, T_{p}f - \mathbb{E}_{p} \mathcal{F}_{p}f \ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_{q} \, T_{p}f \end{aligned}$$

where

$$g(v) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x},v)p(\mathbf{x})]
ight].$$

• Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

• Stein operator:
$$T_p f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$
.

Kernel Stein Discrepancy (KSD)

$$\begin{split} \mathrm{KSD}_p(q) &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q \, T_p f - \mathbb{E}_p \mathcal{T}_p f \\ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q \, T_p f \\ (\mathrm{closed-form \ sup}) &= \|g\|_{\mathcal{F}}, \end{split}$$

where

$$g(v) \coloneqq \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x},v)p(\mathbf{x})]
ight].$$

■ Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

• Stein operator:
$$T_p f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$
.

Kernel Stein Discrepancy (KSD)

$$\begin{split} \mathrm{KSD}_p(q) &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q \, T_p f - \mathbb{E}_p \mathcal{T}_p f \\ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q \, T_p f \\ (\mathrm{closed-form \ sup}) &= \|g\|_{\mathcal{F}}, \end{split}$$

where

$$g(oldsymbol{v}) \mathrel{\mathop:}= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x},oldsymbol{v}) oldsymbol{p}(\mathbf{x})]
ight].$$

Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

Stein operator: $T_p f = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$. (normalizer cancels) Kernel Stein Discrepancy (KSD)

$$\begin{split} \mathrm{KSD}_p(q) &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q \, T_p f - \mathbb{E}_p \, \mathcal{T}_p f \\ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \mathbb{E}_q \, T_p f \\ (\mathrm{closed-form} \, \mathrm{sup}) &= \|g\|_{\mathcal{F}}, \end{split}$$

where

$$g(oldsymbol{v}) \mathrel{\mathop:}= \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{oldsymbol{p}(\mathbf{x})} rac{d}{d\mathbf{x}} [k(\mathbf{x},oldsymbol{v}) oldsymbol{p}(\mathbf{x})]
ight].$$

Known as the Stein witness function. (This will come back later!)

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

Kernel Stein Discrepancy: population expression

Test statistic when $x \in \mathbb{R}^d$, given independent $y, y' \sim q$,

$$\mathrm{KSD}_p^2(q) = \|g\|_{\mathcal{F}^d}^2 = \mathbb{E}_{y \sim q} \mathbb{E}_{y' \sim q} h_p(y,y'),$$

where

$$egin{aligned} &\mathbf{h}_{p}(x,x') = \mathbf{s}_{p}(x)^{ op}\mathbf{s}_{p}(x')k(x,x') \ &+ \mathbf{s}_{p}(x)^{ op}
abla_{x'}k(x,x') \ &+ \mathbf{s}_{p}(x')^{ op}
abla_{x}k(x,x') \ &+ \mathrm{tr}\left[
abla_{x}
abla_{x'}k(x,x')
ight] \end{aligned}$$

• $\mathbf{s}_p(x) \in \mathbb{R}^d =
abla_x \log p(x)$ (score function of p)

Theorem (Chwialkowski et al. (ICML 2016)) Assume appropriate boundary conditions. If kernel is C_0 and O satisfies $\mathbb{E} = \left\| \nabla \left(\log \frac{p(x)}{2} \right) \right\|^2 < \infty$, then $\mathrm{KSD}^2(a) = 0$

Kernel Stein Discrepancy: population expression

Test statistic when $x \in \mathbb{R}^d$, given independent $y, y' \sim q$,

$$\mathrm{KSD}_p^2(q) = \|g\|_{\mathcal{F}^d}^2 = \mathbb{E}_{y \sim q} \mathbb{E}_{y' \sim q} h_p(y,y'),$$

where

$$egin{aligned} & \mathbf{h}_{p}(x,x') = \mathbf{s}_{p}(x)^{ op}\mathbf{s}_{p}(x')k(x,x') \ &+ \mathbf{s}_{p}(x)^{ op}
abla_{x'}k(x,x') \ &+ \mathbf{s}_{p}(x')^{ op}
abla_{x}k(x,x') \ &+ \mathrm{tr}\left[
abla_{x}
abla_{x'}k(x,x')
ight] \end{aligned}$$

• $\mathbf{s}_p(x) \in \mathbb{R}^d =
abla_x \log p(x)$ (score function of p)

Theorem (Chwialkowski et al. (ICML 2016))

Assume appropriate boundary conditions. If kernel is C_0 -universal and Q satisfies $\mathbb{E}_{x \sim q} \left\| \nabla \left(\log \frac{p(x)}{q(x)} \right) \right\|^2 < \infty$, then $\mathrm{KSD}_p^2(q) = 0$ iff p = q.

KSD: Empirical statistic and asymptotics

Given: $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$, a differentiable density p.

Empirical statistic:

$$\widehat{ ext{KSD}_{p}^{2}}(q)\coloneqq rac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}h_{p}(y_{i},y_{j}).$$

• Runtime complexity: $\mathcal{O}(d^2n^2)$.

Asymptotics:

- 1 When p = q, $\widetilde{\mathrm{KSD}}_p^2(q) \xrightarrow{d}$ infinite weighted sum of chi-squared variables
- 2 When $p
 eq q, \, \widetilde{\mathrm{KSD}^2_p}(q) \stackrel{d}{ o}$ a Gaussian.

Testing:

- Get test threshold via wild bootstrap.
- Permutation test not applicable. Have only one set of samples.

KSD: Empirical statistic and asymptotics

Given: $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$, a differentiable density p.

Empirical statistic:

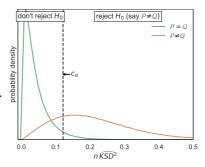
$$\widehat{\mathrm{KSD}_p^2}(q)\coloneqq rac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^nh_p(y_i,y_j).$$

• Runtime complexity: $\mathcal{O}(d^2n^2)$.

Asymptotics:

1 When
$$p = q$$
, $\widetilde{\mathrm{KSD}}_p^2(q) \xrightarrow{d}$ infinite
weighted sum of chi-squared variables

2 When
$$p \neq q$$
, $\widehat{\mathrm{KSD}^2_p}(q) \stackrel{d}{\to}$ a Gaussian.



Testing:

- Get test threshold via wild bootstrap.
- Permutation test not applicable. Have only one set of samples.

KSD: Empirical statistic and asymptotics

Given: $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$, a differentiable density p.

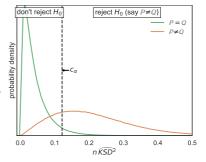
Empirical statistic:

$$\widehat{\mathrm{KSD}_p^2}(q)\coloneqq rac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^nh_p(y_i,y_j).$$

• Runtime complexity: $\mathcal{O}(d^2n^2)$.

Asymptotics:

- 1 When p = q, $\widetilde{\mathrm{KSD}}_p^2(q) \xrightarrow{d}$ infinite weighted sum of chi-squared variables.
- 2 When $p \neq q$, $\widehat{\mathrm{KSD}_p^2}(q) \stackrel{d}{\to} a$ Gaussian.

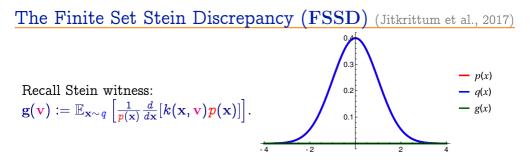


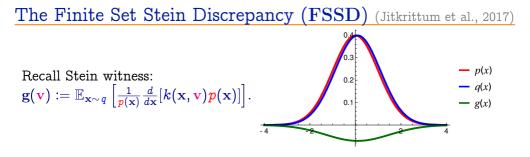
Testing:

- Get test threshold via wild bootstrap.
- Permutation test not applicable. Have only one set of samples.

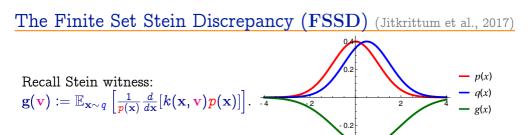
wild bootstrap detail

Linear-time, interpretable Goodness-of-fit Test



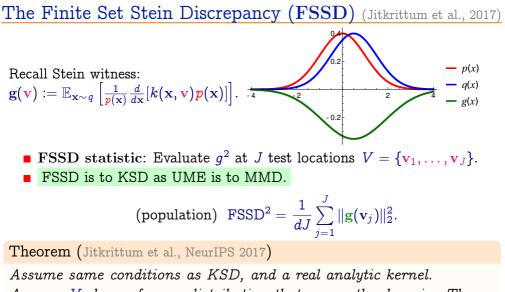






FSSD statistic: Evaluate g² at J test locations V = {v₁,...,v_J}.
FSSD is to KSD as UME is to MMD.

(population)
$$ext{FSSD}^2 = rac{1}{dJ}\sum_{j=1}^J \|\mathbf{g}(\mathbf{v}_j)\|_2^2$$



Assume V drawn from a distribution that covers the domain. Then,

 $FSSD^2 = 0$ if and only if p = q.

FSSD: Empirical statistic and asymptotics

- Estimate $\widehat{\text{FSSD}^2}$ with samples $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$.
- Runtime complexity: $\mathcal{O}(d^2 Jn)$. Linear in n.

Asymptotics:

1 When p = q, $\widehat{\text{FSSD}}^2 \xrightarrow{d}$ finite weighted sum of chi-squared variables.

2 When $p \neq q$, $\widehat{\mathrm{FSSD}^2} \stackrel{d}{ o}$ a Gaussian.

Testing:

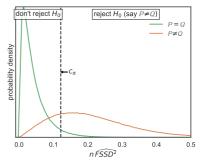
- Weights = eigenvalues of a $dJ \times dJ$ covariance matrix.
- Test threshold = empirical (1α) -quantile.

FSSD: Empirical statistic and asymptotics

- Estimate $\widehat{\text{FSSD}}^2$ with samples $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$.
- Runtime complexity: $\mathcal{O}(d^2 Jn)$. Linear in n.

Asymptotics: 1 When p = q, $\widehat{\text{FSSD}^2} \xrightarrow{d}$ finite weighted sum of chi-squared variables.

2 When
$$p \neq q$$
, $\overrightarrow{\text{FSSD}^2} \stackrel{d}{\rightarrow}$ a Gaussian.



Testing:

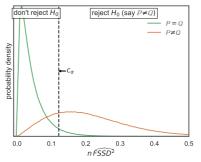
- Weights = eigenvalues of a $dJ \times dJ$ covariance matrix.
- Test threshold = empirical (1α) -quantile.

FSSD: Empirical statistic and asymptotics

- Estimate $\widehat{\text{FSSD}}^2$ with samples $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$.
- Runtime complexity: $\mathcal{O}(d^2 Jn)$. Linear in n.

Asymptotics:

- 1 When p = q, $FSSD^2 \xrightarrow{d}$ finite weighted sum of chi-squared variables.
- 2 When $p \neq q$, $\widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} a$ Gaussian.

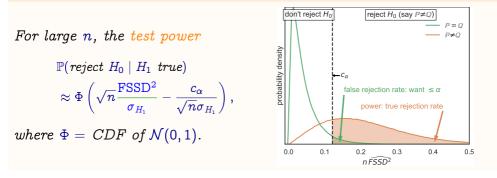


Testing:

- Weights = eigenvalues of a $dJ \times dJ$ covariance matrix.
- Test threshold = empirical (1α) -quantile.

Find test locations by maximizing power

Proposition (Asymptotic power of FSSD² [Jitkrittum et al., 2017])

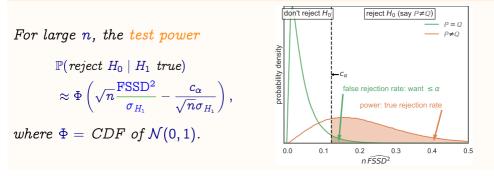


For large n, 1^{st} term $\sqrt{n} \frac{\text{FSSD}^2}{\sigma_{H_1}}$ dominates. Similar to MMD.

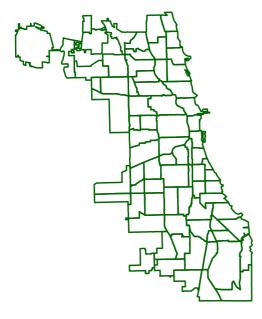
(maximize test power) arg max power $\approx \arg \max_{V} \frac{\text{FSSD}^2}{\widehat{\sigma_{V}}}$

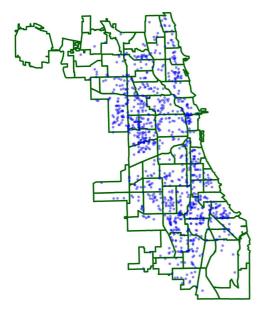
Find test locations by maximizing power

Proposition (Asymptotic power of FSSD² [Jitkrittum et al., 2017])

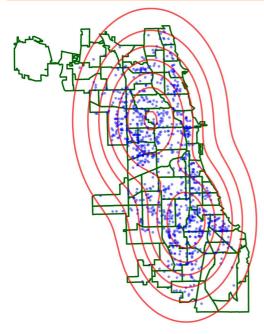


• For large n, 1^{st} term $\sqrt{n} \frac{\text{FSSD}^2}{\sigma_{H_1}}$ dominates. Similar to MMD. (maximize test power) $\arg \max_V \text{power} \approx \arg \max_V \frac{\widehat{\text{FSSD}^2}}{\widehat{\sigma_{H_1}}}$

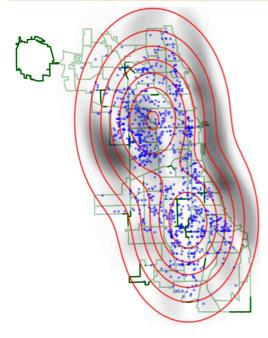




- n = 11957 robbery events in Chicago in 2016.
 - lat/long coordinates = sample from q.
- Model spatial density with Gaussian mixtures.



Model p = 2-component Gaussian mixture.

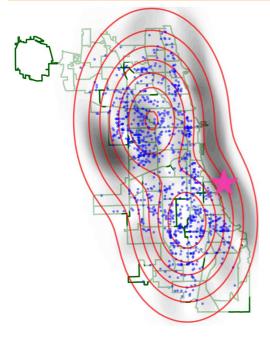


Score surface

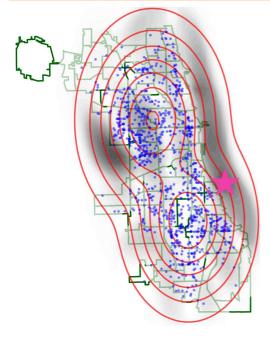
$$\operatorname{score}(\mathbf{v}) := rac{\widehat{\operatorname{FSSD}}^2}{\widehat{\sigma_{H_1}}}$$

(power criterion)

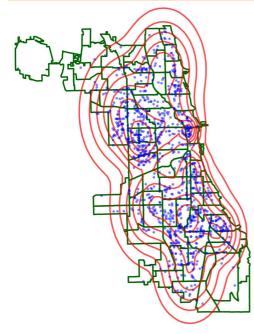
 Dark = high mismatch between p and q.



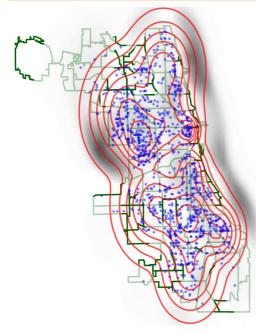
 \star = optimized v.



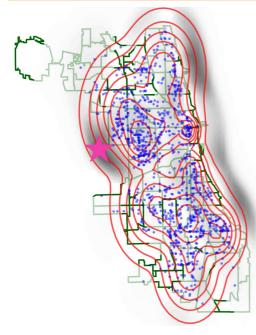
 \star = optimized **v**. No robbery in Lake Michigan.



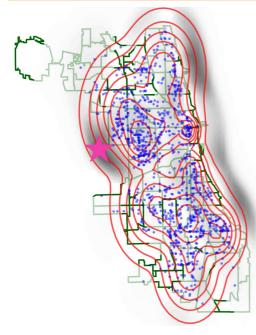
Model p = 10-component Gaussian mixture.



Capture the right tail better.

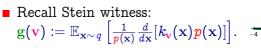


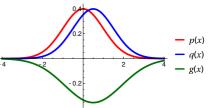
Still, does not capture the left tail.

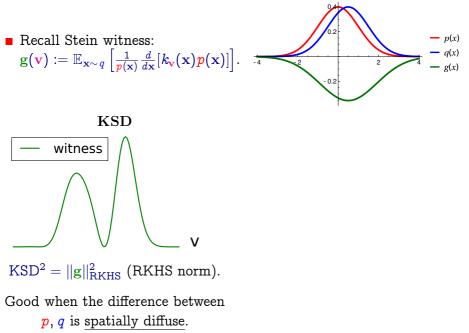


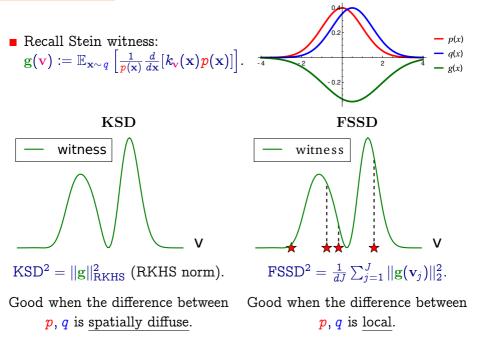
Still, does not capture the left tail.

Learned test locations are interpretable.









Conclusion

- Part 1: Divergence measures
 - Integral probability metrics
 - ϕ -divergences (f-divergences)

Part 2: Statistical hypothesis testing

- Using integral probability metrics (MMD)
- Relation of testing and classification
- Learned features for powerful tests

Part 3: Linear-time features and model criticism

- Interpretable, linear time features for testing (UME)
- Stein's method for model evaluation (KSD)

References and further reading

- UME/NME
 - Chwialkowski et al., NeurIPS 2015. NME with random locations.
 - Jitkrittum et al., NeurIPS 2016. NME with optimized locations.
 - Scetbon and Varoquaux, NeurIPS 2019. Extension of UME/NME with L1 norm.
- Kernel Stein Discrepancy
 - Chwialkowski et al., ICML 2016 and Liu et al., ICML 2016. KSD testing.
 - Oates et al., RSS 2016 and Gorham et al., NeurIPS 2015. MCMC convergence check.
 - Liu and Wang, NeurIPS 2016. Stein variational gradient descent.
 - Barp et al., NeurIPS 2019. For model fitting.
- **FSSD**. Jitkrittum et al., NeurIPS 2017 (best paper).
- Relative tests
 - Bounliphone et al., ICLR 2016. Relative MMD. For 2 models.
 - Jitkrittum et al., NeurIPS 2018. Relative UME, FSSD. For 2 models
 - Lim et al., NeurIPS 2019. Relative KSD, MMD. For > 2 models.

Thank you

Appendix

Outline

1 Appendix: UME, NME

2 Appendix: Relative UME

3 Appendix: Kernel Stein Discrepancy

4 Appendix: FSSD

• Let $\psi(\mathbf{x}) := \frac{1}{\sqrt{J}} \left(k(\mathbf{x}, \mathbf{v}_1), \dots, k(\mathbf{x}, \mathbf{v}_J) \right)^\top \in \mathbb{R}^J$. Equivalently,

$\mathrm{UME}^2(\pmb{P},\pmb{Q}) = ||\mathbb{E}_{\mathbf{x}\sim \pmb{P}}\psi(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim Q}\psi(\mathbf{y})||_2^2.$

 $\blacksquare \ \text{Covariance matrix} \ \mathbf{C} := \text{cov}_{\mathbf{x} \sim \mathcal{P}}[\psi_V(\mathbf{x})] + \text{cov}_{\mathbf{y} \sim \mathcal{Q}}[\psi_V(\mathbf{y})] \in \mathbb{R}^{J \times J}.$

 $\mathrm{NME}^{2}(P,Q) = \left[\mathbb{E}_{\mathbf{x}\sim P}\psi_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim Q}\psi_{V}(\mathbf{y})\right]^{\top} \mathrm{C}^{-1}\left[\mathbb{E}_{\mathbf{x}\sim P}\psi_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim Q}\psi_{V}(\mathbf{y})\right]$

S⁻¹ decorrelates the J terms. Simpler null distribution.

 $\blacksquare \implies$ Normalized ME (NME) statistic.

• Let
$$\psi(\mathbf{x}) := \frac{1}{\sqrt{I}} \left(k(\mathbf{x}, \mathbf{v}_1), \dots, k(\mathbf{x}, \mathbf{v}_J) \right)^\top \in \mathbb{R}^J$$
. Equivalently,

$$\mathrm{UME}^2(P,Q) = \|\mathbb{E}_{\mathbf{x}\sim P}\psi(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim Q}\psi(\mathbf{y})\|_2^2.$$

Covariance matrix $\mathbf{C} := \operatorname{cov}_{\mathbf{x} \sim \boldsymbol{P}}[\psi_V(\mathbf{x})] + \operatorname{cov}_{\mathbf{y} \sim \boldsymbol{Q}}[\psi_V(\mathbf{y})] \in \mathbb{R}^{J \times J}.$

 $\mathrm{NME}^{2}(P,Q) = [\mathbb{E}_{\mathbf{x} \sim P} \psi_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim Q} \psi_{V}(\mathbf{y})]^{\top} \mathbf{C}^{-1} [\mathbb{E}_{\mathbf{x} \sim P} \psi_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim Q} \psi_{V}(\mathbf{y})]$

S⁻¹ decorrelates the J terms. Simpler null distribution.

 $\blacksquare \implies \textbf{Normalized ME (NME) statistic.}$

• Let
$$\psi(\mathbf{x}) := \frac{1}{\sqrt{I}} \left(k(\mathbf{x}, \mathbf{v}_1), \dots, k(\mathbf{x}, \mathbf{v}_J) \right)^\top \in \mathbb{R}^J$$
. Equivalently,

$$\mathrm{UME}^2(P,Q) = \|\mathbb{E}_{\mathbf{x}\sim P}\psi(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim Q}\psi(\mathbf{y})\|_2^2.$$

Covariance matrix $\mathbf{C} := \operatorname{cov}_{\mathbf{x} \sim \boldsymbol{P}}[\psi_V(\mathbf{x})] + \operatorname{cov}_{\mathbf{y} \sim \boldsymbol{Q}}[\psi_V(\mathbf{y})] \in \mathbb{R}^{J \times J}.$

 $\mathrm{NME}^{2}(\boldsymbol{P}, \boldsymbol{Q}) = \left[\mathbb{E}_{\mathbf{x} \sim \boldsymbol{P}} \boldsymbol{\psi}_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim \boldsymbol{Q}} \boldsymbol{\psi}_{V}(\mathbf{y})\right]^{\top} \mathbf{C}^{-1} \left[\mathbb{E}_{\mathbf{x} \sim \boldsymbol{P}} \boldsymbol{\psi}_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim \boldsymbol{Q}} \boldsymbol{\psi}_{V}(\mathbf{y})\right]$

S⁻¹ decorrelates the J terms. Simpler null distribution.

 $\blacksquare \implies$ Normalized ME (NME) statistic.

• Let
$$\psi(\mathbf{x}) := rac{1}{\sqrt{J}} \left(k(\mathbf{x},\mathbf{v}_1),\ldots,k(\mathbf{x},\mathbf{v}_J)
ight)^{ op} \in \mathbb{R}^J$$
. Equivalently,

$$\mathrm{UME}^2(P,Q) = \|\mathbb{E}_{\mathbf{x}\sim P}\psi(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim Q}\psi(\mathbf{y})\|_2^2.$$

Covariance matrix $\mathbf{C} := \operatorname{cov}_{\mathbf{x} \sim \boldsymbol{P}}[\psi_V(\mathbf{x})] + \operatorname{cov}_{\mathbf{y} \sim \boldsymbol{Q}}[\psi_V(\mathbf{y})] \in \mathbb{R}^{J \times J}.$

 $\mathrm{NME}^{2}(\boldsymbol{P},\boldsymbol{Q}) = \left[\mathbb{E}_{\mathbf{x}\sim\boldsymbol{P}}\psi_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim\boldsymbol{Q}}\psi_{V}(\mathbf{y})\right]^{\top}\mathbf{C}^{-1}\left[\mathbb{E}_{\mathbf{x}\sim\boldsymbol{P}}\psi_{V}(\mathbf{x}) - \mathbb{E}_{\mathbf{y}\sim\boldsymbol{Q}}\psi_{V}(\mathbf{y})\right]$

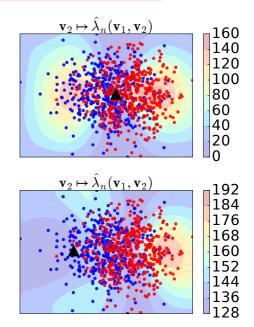
- **S**⁻¹ decorrelates the J terms. Simpler null distribution.
- $\blacksquare \implies$ Normalized ME (NME) statistic.

Illustration of NME: Two Informative Features

2D problem.

 $P:\mathcal{N}([0,0],I) \ Q:\mathcal{N}([1,0],I)$

- J = 2 features.
- Fix \mathbf{v}_1 to \blacktriangle .
- Contour plot of $\mathbf{v}_2 \mapsto \hat{\lambda}_n(\{\mathbf{v}_1, \mathbf{v}_2\}).$
- {v₁, v₂} chosen to reveal the difference of P and Q.



Full NME Test Statistic. J = 1

Let
$$\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$$
 be the J test locations.
Let $\overline{\mathbf{z}}_n := \begin{pmatrix} \hat{\mu}_P(\mathbf{v}_1) - \hat{\mu}_Q(\mathbf{v}_1) \\ \vdots \\ \hat{\mu}_P(\mathbf{v}_J) - \hat{\mu}_Q(\mathbf{v}_J) \end{pmatrix} \in \mathbb{R}^J.$
Let $(\mathbf{S}_n)_{ij} := \widehat{\operatorname{cov}}_{\mathbf{x}}[k(\mathbf{x}, \mathbf{v}_i), k(\mathbf{x}, \mathbf{v}_j)] + \widehat{\operatorname{cov}}_{\mathbf{y}}[k(\mathbf{y}, \mathbf{v}_i), k(\mathbf{y}, \mathbf{v}_j)] \in \mathbb{R}^{J \times J}.$

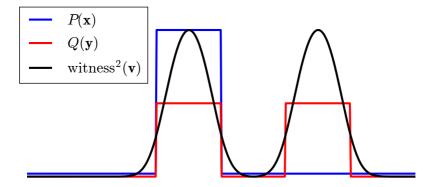
Then, the statistic

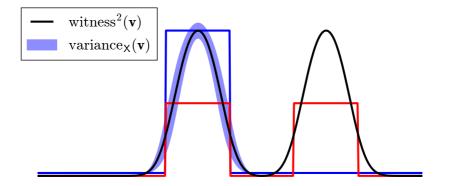
$$\hat{\lambda}_n := n \overline{\mathbf{z}}_n^{ op} \left(\mathbf{S}_n + oldsymbol{\gamma}_n I
ight)^{-1} \overline{\mathbf{z}}_n,$$

where $\gamma_n > 0$ is a regularization parameter. • When J = 1,

$$\hat{\lambda}_n = n rac{[\hat{\mu}_P(\mathbf{v}) - \hat{\mu}_Q(\mathbf{v})]^2}{\gamma_{\mathrm{n}} + \mathrm{var}_{\mathbf{x}}[k(\mathbf{x},\mathbf{v})] + \mathrm{var}_{\mathbf{y}}[k(\mathbf{y},\mathbf{v})]}.$$

Computing λ̂_n: O(J³ + J²n + Jdn).
 Optimization of V: O(J³ + J²dn).





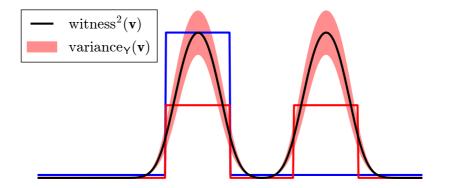


Illustration: NME Statistic. J = 1

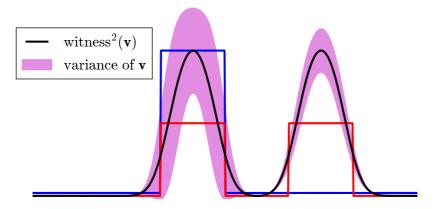


Illustration: NME Statistic. J = 1

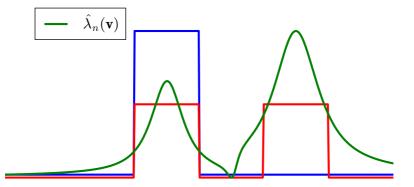
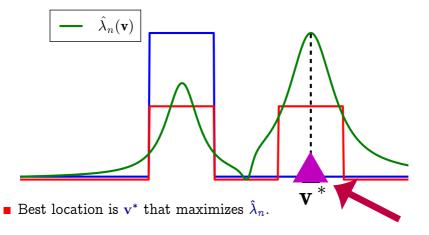


Illustration: NME Statistic. J = 1



A Lower Bound on the Test Power of NME

Proposition (Jitkrittum et al., 2016) The power $\mathbb{P}_{H_1}(\hat{\lambda}_n > T_{\alpha}) \ge L(\lambda_n) =$

$$1 - 2e^{-\xi_1(\lambda_n - T_\alpha)^2/n} - 2e^{-\frac{[\gamma_n(\lambda_n - T_\alpha)(n-1) - \xi_2 n]^2}{\xi_3 n(2n-1)^2}} - 2e^{-\frac{[(\lambda_n - T_\alpha)/3 - \overline{c}_3 n\gamma_n]^2 \gamma_n^2}{\xi_4}}$$

where

λ_n = nNME²(P, Q). Population quantity.
 γ_n, ξ₁,..., ξ₄ > 0 are constants.

For large n, $L(\lambda_n)$ is an increasing function of λ_n .

Best parameters = arg max $L(\lambda_n)$ = arg max λ_n .

Optimize (gradient ascent) on a held-out set (estimated λ_n). Test on a separate set.

back to NME

A Lower Bound on the Test Power of NME

 $ext{Proposition (Jitkrittum et al., 2016)} \ The power <math>\mathbb{P}_{H_1}(\hat{\lambda}_n > T_{lpha}) \geq L(\lambda_n) =$

$$1 - 2e^{-\xi_1(\lambda_n - T_\alpha)^2/n} - 2e^{-\frac{[\gamma_n(\lambda_n - T_\alpha)(n-1) - \xi_2 n]^2}{\xi_3 n(2n-1)^2}} - 2e^{-\frac{[(\lambda_n - T_\alpha)/3 - \overline{c_3} n\gamma_n]^2 \gamma_n^2}{\xi_4}}$$

where

λ_n = nNME²(P, Q). Population quantity.
 γ_n, ξ₁,..., ξ₄ > 0 are constants.

For large n, $L(\lambda_n)$ is an increasing function of λ_n .

Best parameters = $\arg \max L(\lambda_n) = \arg \max \lambda_n$.

Optimize (gradient ascent) on a held-out set (estimated λ_n). Test on a separate set.

▶ back to NME

A Lower Bound on the Test Power of NME

 $ext{Proposition (Jitkrittum et al., 2016)} \ The power <math>\mathbb{P}_{H_1}(\hat{\lambda}_n > T_{lpha}) \geq L(\lambda_n) =$

$$1 - 2e^{-\xi_1(\lambda_n - T_\alpha)^2/n} - 2e^{-\frac{[\gamma_n(\lambda_n - T_\alpha)(n-1) - \xi_2 n]^2}{\xi_3 n(2n-1)^2}} - 2e^{-\frac{[(\lambda_n - T_\alpha)/3 - \overline{c_3} n\gamma_n]^2 \gamma_n^2}{\xi_4}}$$

where

λ_n = nNME²(P, Q). Population quantity.
γ_n, ξ₁,..., ξ₄ > 0 are constants.

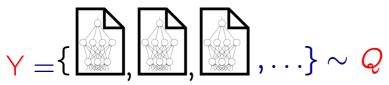
For large n, $L(\lambda_n)$ is an increasing function of λ_n .

Best parameters = arg max $L(\lambda_n)$ = arg max λ_n .

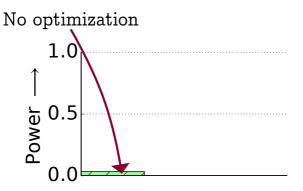
 Optimize (gradient ascent) on a held-out set (estimated λ_n). Test on a separate set.

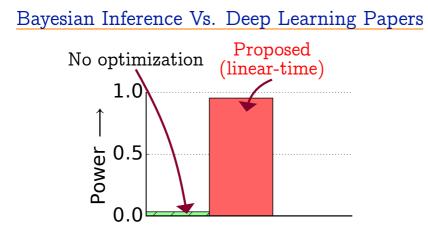
Papers on Bayesian inference

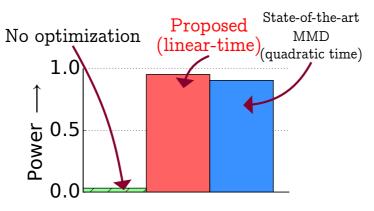
Papers on deep learning

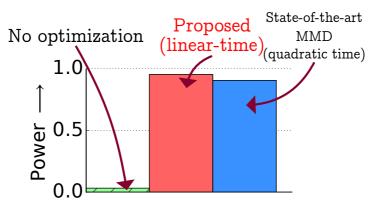


- NIPS papers (1988-2015)
- Sample size n = 216.
- Random 2000 nouns (dimensions). TF-IDF representation.









Learned informative feature (a new document):

infer, Bayes, Monte Carlo, adaptor, motif, haplotype, ECG, covariance, Boltzmann

Outline

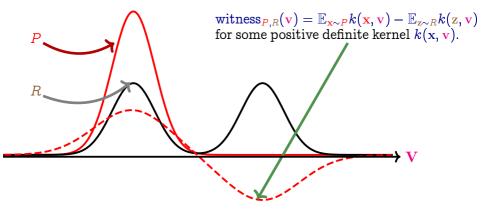
1 Appendix: UME, NME

2 Appendix: Relative UME

3 Appendix: Kernel Stein Discrepancy

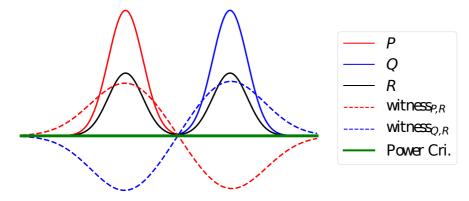
4 Appendix: FSSD

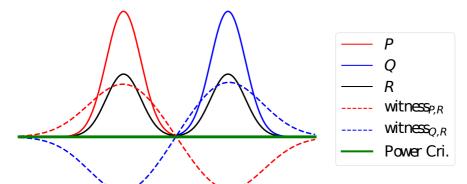
Recall the witness function between P and R:



Assume only one test location v. Recall

$$\mathrm{UME}^2_\mathbf{v}(P,R) = \mathrm{witness}^2_{P,R}(\mathbf{v}) = (\mu_P(\mathbf{v}) - \mu_R(\mathbf{v}))^2$$

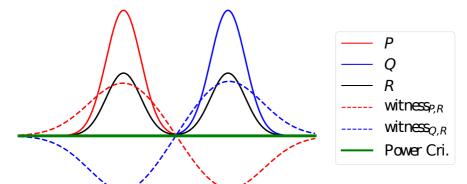




Power criterion(v) = f(v) is a function such that maximizing it corresponds to maximizing the test power.

 $f(\mathbf{v}) = \frac{\text{witness}_{\boldsymbol{P},R}^2(\mathbf{v}) - \text{witness}_{\boldsymbol{Q},R}^2(\mathbf{v})}{\text{standard deviation}_{\boldsymbol{P},\boldsymbol{Q},R}(\mathbf{v})} = \frac{U_P^2 - U_Q^2}{\sqrt{4(\zeta_P^2 - 2\zeta_{PQ} + \zeta_Q^2)}}$

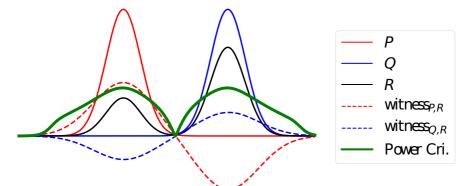
 $f(\mathbf{v}) > 0 \implies Q \text{ is better in the region around } \mathbf{v}$ $f(\mathbf{v}) < 0 \implies P \text{ is better in the region around } \mathbf{v}$



Power criterion(v) = f(v) is a function such that maximizing it corresponds to maximizing the test power.

 $f(\mathbf{v}) = \frac{\text{witness}_{\boldsymbol{P},R}^2(\mathbf{v}) - \text{witness}_{\boldsymbol{Q},R}^2(\mathbf{v})}{\text{standard deviation}_{\boldsymbol{P},\boldsymbol{Q},R}(\mathbf{v})} = \frac{U_P^2 - U_Q^2}{\sqrt{4(\zeta_P^2 - 2\zeta_{PQ} + \zeta_Q^2)}}$

 $f(\mathbf{v}) > 0 \implies Q \text{ is better in the region around } \mathbf{v}$ $f(\mathbf{v}) < 0 \implies P \text{ is better in the region around } \mathbf{v}$

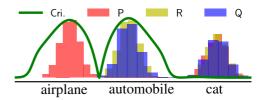


Power criterion(v) = f(v) is a function such that maximizing it corresponds to maximizing the test power.

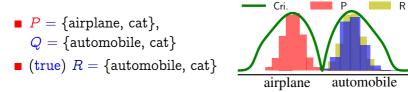
 $f(\mathbf{v}) = \frac{\text{witness}_{\boldsymbol{P},R}^2(\mathbf{v}) - \text{witness}_{\boldsymbol{Q},R}^2(\mathbf{v})}{\text{standard deviation}_{\boldsymbol{P},\boldsymbol{Q},R}(\mathbf{v})} = \frac{U_P^2 - U_Q^2}{\sqrt{4(\zeta_P^2 - 2\zeta_{PQ} + \zeta_Q^2)}}$

 $f(\mathbf{v}) > 0 \implies Q \text{ is better in the region around } \mathbf{v}$ $f(\mathbf{v}) < 0 \implies P \text{ is better in the region around } \mathbf{v}$

- P = {airplane, cat},
 Q = {automobile, cat}
- (true) $R = \{ \text{automobile, cat} \}$

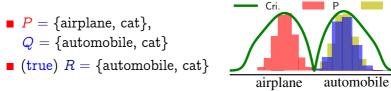


Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

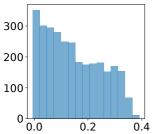


 Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer. Q

cat

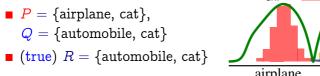


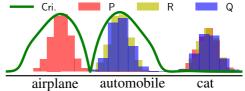
 Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.



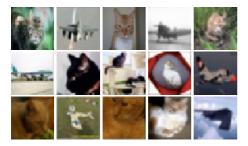
Histogram of power criterion values $f(\mathbf{v})$ evaluated at $\mathbf{v} = \{ \text{airplane, automobile, cat} \}$.

 All non-negative. ⇒ Q is equally good or better than P everywhere. cat



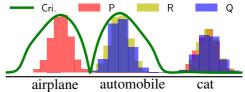


 Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.



Images v with the lowest values of $f(v) \approx 0$. $\implies P, Q$ perform equally well in these regions.

P = {airplane, cat},
Q = {automobile, cat}
(true) R = {automobile, cat}



 Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

Images v with the highest values of f(v) > 0. $\implies Q$ is better than P in these regions.

Outline

1 Appendix: UME, NME

2 Appendix: Relative UME

3 Appendix: Kernel Stein Discrepancy

4 Appendix: FSSD

Stein operator is linear

Re-write Stein operator as:

$$egin{aligned} \left[T_{p}f
ight] (x) &= rac{1}{p(x)} \, rac{d}{dx} \left(f(x)p(x)
ight) \ &= rac{1}{p(x)} \left[p(x) rac{df}{dx}(x) + f(x) rac{dp}{dx}(x)
ight] \ &= f(x) rac{d}{dx} \log p(x) + rac{d}{dx} f(x) \end{aligned}$$

Stein features in \mathcal{F}

$$egin{aligned} [T_p f] \left(x
ight) &= \left(rac{d}{dx} \log p(x)
ight) f(x) + rac{d}{dx} f(x) \ &=: \langle f, \underbrace{\xi(x)}_{ ext{Stein features}}
ight
angle_{\mathcal{F}} \end{aligned}$$

where $\mathbf{E}_{\boldsymbol{x}\sim \boldsymbol{p}}\boldsymbol{\xi}(\boldsymbol{x})=0.$

Stein operator is linear

Re-write Stein operator as:

$$egin{aligned} \left[T_{p}f
ight](x) &= rac{1}{p(x)} \, rac{d}{dx} \left(f(x)p(x)
ight) \ &= rac{1}{p(x)} \left[p(x)rac{df}{dx}(x) + f(x)rac{dp}{dx}(x)
ight] \ &= f(x)rac{d}{dx} \log p(x) + rac{d}{dx} f(x) \end{aligned}$$

Stein features in \mathcal{F}

$$egin{aligned} & [T_p f]\left(x
ight) = \left(rac{d}{dx}\log p(x)
ight)f(x) + rac{d}{dx}f(x) \ & =: \langle f, \underbrace{\xi(x)}_{ ext{Stein features}}
angle_{\mathcal{F}} \end{aligned}$$

where $\mathbf{E}_{x \sim p} \boldsymbol{\xi}(x) = 0$.

The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

Using kernel derivative trick in (a),

$$egin{aligned} & [T_p f]\left(x
ight) = \left(rac{d}{dx}\log p(x)
ight)f(x) + rac{d}{dx}f(x) \ & = \left\langle f, \left(rac{d}{dx}\log p(x)
ight) arphi(x) + rac{d}{dx}arphi(x)
ight
angle_{\mathcal{F}} \ & =: \langle f, oldsymbol{\xi}(x)
angle_{\mathcal{F}}. \end{aligned}$$

- Can be shown that $[T_p f](x) = \langle f, \xi(x) \rangle_{\mathcal{F}}$. where
 - $\xi(x) = \left(\frac{d}{dx}\log p(x)\right)\varphi(x) + \frac{d}{dx}\varphi(x),$
 - $\varphi(x) =$ feature map associated with k

Closed-form expression for KSD:

 $egin{aligned} \mathrm{SD}_p(q) &= \sup_{egin{aligned} \|f\|_{\mathcal{F}} \leq 1} \mathrm{E}_{y \sim q} \left[T_p f
ight](y) \ &= \sup_{egin{aligned} \|f\|_{\mathcal{F}} \leq 1} \mathrm{E}_{y \sim q} \left(f, \xi(y)
ight)_{\mathcal{F}} \ &= \sup_{egin{aligned} \|f\|_{\mathcal{F}} \leq 1} \mathrm{E}_{y \sim q} \xi(y)
ight)_{\mathcal{F}} = \sup_{egin{aligned} \|h\|_{\mathcal{F}} \leq 1 \end{array}} \| \mathrm{E}_{y \sim q} \xi(y)
ight)_{\mathcal{F}} &= \sup_{egin{aligned} \|h\|_{\mathcal{F}} \leq 1 \end{array}} \| \mathrm{E}_{y \sim q} \xi(y)
ight)_{\mathcal{F}} = \| \mathrm{E}_{y \sim q} \xi(y)
ight)_{\mathcal{F}} . \end{aligned}$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

- Can be shown that $[T_p f](x) = \langle f, \xi(x) \rangle_{\mathcal{F}}$. where
 - $\xi(x) = \left(\frac{d}{dx}\log p(x)\right)\varphi(x) + \frac{d}{dx}\varphi(x),$
 - $\varphi(x) =$ feature map associated with k

Closed-form expression for KSD:

$$\begin{split} \operatorname{KSD}_{p}(q) &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \operatorname{E}_{y \sim q} \left[T_{p} f \right](y) \\ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \operatorname{E}_{y \sim q} \left\langle f, \xi(y) \right\rangle_{\mathcal{F}} \\ &= \sup_{\substack{(a) \ \|f\|_{\mathcal{F}} \leq 1}} \left\langle f, \operatorname{E}_{y \sim q} \xi(y) \right\rangle_{\mathcal{F}} \stackrel{=}{=} \left\| \operatorname{E}_{y \sim q} \xi(y) \right\|_{\mathcal{F}}. \end{split}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

- Can be shown that $[T_p f](x) = \langle f, \xi(x) \rangle_{\mathcal{F}}$. where
 - $\xi(x) = \left(\frac{d}{dx}\log p(x)\right)\varphi(x) + \frac{d}{dx}\varphi(x),$
 - $\varphi(x) =$ feature map associated with k

Closed-form expression for KSD:

$$\begin{split} \operatorname{KSD}_{p}(q) &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{y \sim q} \left[T_{p} f \right](y) \\ &= \sup_{\|f\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{y \sim q} \left\langle f, \xi(y) \right\rangle_{\mathcal{F}} \\ &= \sup_{(a)} \sup_{\|f\|_{\mathcal{F}} \leq 1} \left\langle f, \operatorname{\mathbf{E}}_{y \sim q} \xi(y) \right\rangle_{\mathcal{F}} = \left\| \operatorname{\mathbf{E}}_{y \sim q} \xi(y) \right\|_{\mathcal{F}}. \end{split}$$

• At (b), we have $f^* = \mathbf{E}_{y \sim q} \boldsymbol{\xi}(y)$ as the arg sup.

- Can be shown that $[T_p f](x) = \langle f, \xi(x) \rangle_{\mathcal{F}}$. where
 - $\xi(x) = \left(\frac{d}{dx}\log p(x)\right)\varphi(x) + \frac{d}{dx}\varphi(x),$
 - $\varphi(x) = ext{feature map}$ associated with k

Closed-form expression for KSD:

$$egin{aligned} & \operatorname{KSD}_{p}(q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{y \sim q}\left[T_{p}f
ight](y) \ & = \sup_{\|f\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{y \sim q}\left\langle f, \boldsymbol{\xi}(y)
ight
angle_{\mathcal{F}} \ & = \sup_{(a)} \sup_{\|f\|_{\mathcal{F}} \leq 1}\left\langle f, \operatorname{\mathbf{E}}_{y \sim q} \boldsymbol{\xi}(y)
ight
angle_{\mathcal{F}} = (b) \left\|\operatorname{\mathbf{E}}_{y \sim q} \boldsymbol{\xi}(y)
ight\|_{\mathcal{F}}. \end{aligned}$$

• At (b), we have $f^* = \mathbf{E}_{y \sim q} \xi(y)$ as the arg sup.

Caution: (a) requires a condition for the Riesz theorem to hold,

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx}\log oldsymbol{p}(x)
ight)^2 < \infty$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

KSD: Empirical statistic and asymptotics

Given: $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$, a differentiable density p.

The empirical statistic:

$$\widehat{\operatorname{KSD}_p^2}(q) \coloneqq rac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n h_p(y_i,y_j).$$

KSD: Empirical statistic and asymptotics

Given: $\{y_i\}_{i=1}^n \stackrel{i.i.d.}{\sim} q$, a differentiable density p.

The empirical statistic:

$$\widehat{\mathrm{KSD}_p^2}(q) \coloneqq rac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n h_p(y_i, y_j).$$

Asymptotic distribution when $p \neq q$:

$$\sqrt{n}\left(\widehat{\mathrm{KSD}_p^2}(q)-\mathrm{KSD}_p^2(q)
ight) \stackrel{d}{ o} \mathcal{N}(0,\sigma_{h_p}^2) \qquad \sigma_{h_p}^2=4\mathrm{Var}_y[\mathbf{E}_{y'}[h_p(y,y')]].$$

KSD: Empirical statistic and asymptotics

• Given: $\{y_i\}_{i=1}^n \overset{i.i.d.}{\sim} q$, a differentiable density p.

The empirical statistic:

$$\widehat{\mathrm{KSD}_{p}^{2}}(q) \coloneqq rac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}h_{p}(y_{i},y_{j}).$$

Asymptotic distribution when p = q:

$$\widehat{n\mathrm{KSD}_p^2}(q)\sim \sum_{\ell=1}^\infty \lambda_\ell Z_\ell^2 ext{ where } Z_\ell\sim\mathcal{N}(0,1) ext{ i.i.d.}, \ \lambda_i\psi_i(x')=\int_\mathcal{X} h_p(x,x')\psi_i(x)dp(x).$$

Get test threshold via wild bootstrap.

Wild bootstrap test for KSD [Chwialkowski et al. ICML 2016)]

Generate samples B_1, \ldots, B_m by wild bootstrap

1 For l = 1, ..., m:

1 Draw i.i.d. W_1, \ldots, W_n (-1/+1) where $P(W_i = 1) = P(W_1 = -1) = 1/2.$ 2 $B_l := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n W_i W_j h_p(y_i, y_j)$

- 2 Threshold = (1α) -quantile from $\{B_1, \dots, B_m\}$
- 3 Reject H_0 if $\text{KSD}_p^2(q) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n h_p(y_i, y_j)$ is larger than the threshold.

Proposition ([Chwialkowski et al. ICML 2016)])

- When p = q, B_1, \ldots, B_m are samples from the null distribution as $n \to \infty$.
- When $p \neq q$, B_1, \ldots, B_m converge to 0. $\text{KSD}_p^2(q)$ converges to $\text{KSD}_p^2(q) > 0$.

Wild bootstrap test for KSD [Chwialkowski et al. ICML 2016)]

Generate samples B_1, \ldots, B_m by wild bootstrap

- 1 For l = 1, ..., m:
 - 1 Draw i.i.d. W_1, \ldots, W_n (-1/+1) where $P(W_i = 1) = P(W_1 = -1) = 1/2.$ 2 $B_l := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n W_i W_j h_p(y_i, y_j)$
- 2 Threshold = (1α) -quantile from $\{B_1, \ldots, B_m\}$
- 3 Reject H_0 if $\widetilde{\text{KSD}}_p^2(q) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n h_p(y_i, y_j)$ is larger than the threshold.

Proposition ([Chwialkowski et al. ICML 2016)])

- When p = q, B_1, \ldots, B_m are samples from the null distribution as $n \to \infty$.
- When $p \neq q$, B_1, \ldots, B_m converge to 0. $\mathrm{KSD}_p^2(q)$ converges to $\mathrm{KSD}_p^2(q) > 0$.

Wild bootstrap test for KSD [Chwialkowski et al. ICML 2016)]

Generate samples B_1, \ldots, B_m by wild bootstrap

1 For l = 1, ..., m:

- 1 Draw i.i.d. W_1, \ldots, W_n (-1/+1) where $P(W_i = 1) = P(W_1 = -1) = 1/2.$ 2 $B_l := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n W_i W_j h_p(y_i, y_j)$
- 2 Threshold = (1α) -quantile from $\{B_1, \ldots, B_m\}$
- 3 Reject H_0 if $\widetilde{\mathrm{KSD}}_p^2(q) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n h_p(y_i, y_j)$ is larger than the threshold.

Proposition ([Chwialkowski et al. ICML 2016)])

- When p = q, B_1, \ldots, B_m are samples from the null distribution as $n \to \infty$.
- When $p \neq q$, B_1, \ldots, B_m converge to 0. $\text{KSD}_p^2(q)$ converges to $\text{KSD}_p^2(q) > 0$.

Wild bootstrap test for KSD [Chwialkowski et al. ICML 2016)]

Generate samples B_1, \ldots, B_m by wild bootstrap

1 For l = 1, ..., m:

- 1 Draw i.i.d. W_1, \ldots, W_n (-1/+1) where $P(W_i = 1) = P(W_1 = -1) = 1/2.$ 2 $B_l := \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n W_i W_j h_p(y_i, y_j)$
- 2 Threshold = (1α) -quantile from $\{B_1, \ldots, B_m\}$
- 3 Reject H_0 if $\widetilde{\mathrm{KSD}}_p^2(q) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n h_p(y_i, y_j)$ is larger than the threshold.

Proposition ([Chwialkowski et al. ICML 2016)])

- When p = q, B_1, \ldots, B_m are samples from the null distribution as $n \to \infty$.
- When $p \neq q$, B_1, \ldots, B_m converge to 0. $KSD_p^2(q)$ converges to $KSD_p^2(q) > 0$.

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, ..., L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

$$\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$$

where

$$egin{aligned} h_p(x,x') &= \mathbf{s}_p(x)^ op \mathbf{s}_p(x')k(x,x') - \mathbf{s}_p(x)^ op k_2(x,x') \ &- \mathbf{s}_p(x')^ op k_1(x,x') + ext{tr} \left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x, x') = \Delta_x^{-1} k(x, x'), \ \Delta_x^{-1}$ is cyclic backwards difference on x, $\mathbf{s}_p(x) = \frac{\Delta p(x)}{p(x)}$

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, ..., L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

$$\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$$

where

$$egin{aligned} h_p(x,x') &= \mathbf{s}_p(x)^ op \mathbf{s}_p(x')k(x,x') - \mathbf{s}_p(x)^ op k_2(x,x') \ &- \mathbf{s}_p(x')^ op k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x'), \, \Delta_x^{-1}$ is cyclic backwards difference on x, $\mathbf{s}_p(x) = \frac{\Delta_p(x)}{p(x)}$

A discrete kernel: $k(x, x') = \exp\left(-d_H(x, x')\right)$, where $d_H(x, x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x'_d)$.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, ..., L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

$$\mathrm{KSD}_{p}^{2}(Q) = \mathrm{E}_{x,x' \sim \, q} \, h_{p}(x,x')$$

where

$$egin{aligned} h_p(x,x') &= \mathrm{s}_p(x)^ op \mathrm{s}_p(x')k(x,x') - \mathrm{s}_p(x)^ op k_2(x,x') \ &- \mathrm{s}_p(x')^ op k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x'), \ \Delta_x^{-1}$ is cyclic backwards difference on x, $\mathbf{s}_p(x) = rac{\Delta p(x)}{p(x)}$

A discrete kernel: $k(x, x') = \exp\left(-d_H(x, x')\right)$, where $d_H(x, x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x'_d)$.

 $\mathrm{KSD}_p^2(Q) = 0$ iff P = Q if

Gram matrix over all the configurations in X is strictly positive definite,
P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

Outline

1 Appendix: UME, NME

2 Appendix: Relative UME

3 Appendix: Kernel Stein Discrepancy

4 Appendix: FSSD

FSSD is a Discrepancy Measure

Theorem

Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Stein witness not too rough) $\|g\|_{\mathcal{F}}^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x} \sim q} \| \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \|^2 < \infty$.
- 4 (Vanishing boundary) $\lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Let $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$ be drawn *i.i.d.* from a distribution η which has a density. Then, for any $J \ge 1$,

If p = q, $FSSD^2 = 0$. If $p \neq q$, η -almost surely, $FSSD^2 >$

Gaussian kernel $k(\mathbf{x}, \mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}
ight)$ works.

FSSD is a Discrepancy Measure

Theorem

Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Stein witness not too rough) $\|g\|_{\mathcal{F}}^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x}\sim q} ||
 abla_{\mathbf{x}} \log rac{p(\mathbf{x})}{q(\mathbf{x})} ||^2 < \infty$.
- 4 (Vanishing boundary) $\lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Let $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$ be drawn i.i.d. from a distribution η which has a density. Then, for any $J \geq 1$,

If p = q, FSSD² = 0.
 If p ≠ q, η-almost surely, FSSD² > 0.

Gaussian kernel $k(\mathbf{x},\mathbf{v}) = \exp\left(-rac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_{\star}^2}
ight)$ wor

FSSD is a Discrepancy Measure

Theorem

Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Stein witness not too rough) $\|g\|_{\mathcal{F}}^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x} \sim q} || \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} ||^2 < \infty$.
- 4 (Vanishing boundary) $\lim_{\|\mathbf{x}\| \to \infty} p(\mathbf{x}) \mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Let $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$ be drawn i.i.d. from a distribution η which has a density. Then, for any $J \geq 1$,

If p = q, FSSD² = 0.
 If p ≠ q, η-almost surely, FSSD² > 0.

Gaussian kernel $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_k^2}\right)$ works.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

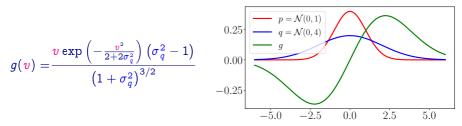
$$g(v)= rac{v \exp \left(-rac{v^2}{2+2\sigma_q^2}
ight) \left(\sigma_q^2-1
ight)}{\left(1+\sigma_q^2
ight)^{3/2}}$$

If v= 0, then $\mathrm{FSSD}^2=g^2(v)=$ 0 regardless of $\sigma^2_{g}.$

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

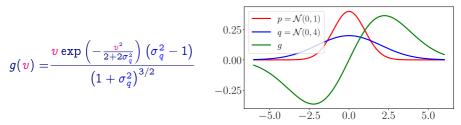


If v = 0, then $\mathrm{FSSD}^2 = g^2(v) = 0$ regardless of σ_q^2

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.

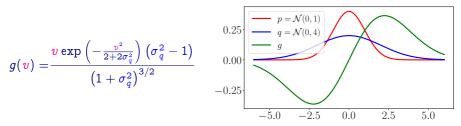


If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$ext{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[rac{1}{p(\mathbf{x})} rac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]
ight].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.



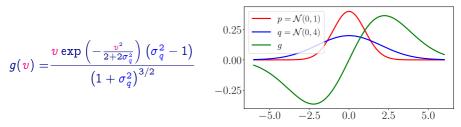
If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.

So, if $v \sim$ a distribution with a density, then $v \notin R$.

$$\text{Recall } \mathbf{g}(\mathbf{v}) := \mathbb{E}_{\mathbf{x} \sim q} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right].$$

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(0, \sigma_q^2)$. Use unit-width Gaussian kernel.



If v = 0, then $FSSD^2 = g^2(v) = 0$ regardless of σ_q^2 .

- If $g \neq 0$, and k is real analytic, $R = \{v \mid g(v) = 0\}$ (blind spots) has 0 Lebesgue measure.
- So, if $v \sim$ a distribution with a density, then $v \notin R$.