Advances in kernel exponential families

Arthur Gretton

Gatsby Computational Neuroscience Unit,
University College London

Tenerife, 2018

1/66

Outline

Motivating application:
m Fast estimation of complex multivariate densities
The infinite exponential family:
m Multivariate Gaussian — Gaussian process
m Finite mixture model — Dirichlet process mixture model
m Finite exponential family — 777
Application:
m Adaptive HMC for Pseudo-Margial MCMC (likelihood not
computable), or amortized HMC

2/66

Outline

Motivating application:
m Fast estimation of complex multivariate densities
The infinite exponential family:

m Multivariate Gaussian — Gaussian process
m Finite mixture model — Dirichlet process mixture model
m Finite exponential family — 777

Application:

m Adaptive HMC for Pseudo-Margial MCMC (likelihood not
computable), or amortized HMC

In this talk:

m Fitting of the infinite dimensional exponential family using score

matchlng Sriperumbudur, Fukumizu, G, Hyvarinen, Kumar, JMLR (2017)
m Guaranteed speed improvements by Nystrom

Sutherland, Hyvarinen, Arbel, G., AISTATS (2018)
m Conditional models arbel, c., AlsTATS (2018)
m Deep infinite exponential family v, sutheriand, Strathmann, G., 227 (2023)

2/66

Goal 1: learn high dimensional, complex densities

Red Wine Parkinsons
6 - .
4- 21
r ° '
T el
- ™ LRy
~ 2 ",*; -t'.-.': <
¥ ,.-'.' x
0 - “ 0
_2 . .-
_4 - .
_2 4 .
_6 T T T T T T
-6 -4 -2 0 2 4 -1 1
X6 X15
We want:

m Efficient computation and representation

m Statistical guarantees
3/66

Goal 2: adaptive hamiltonian monte carlo
m HMC: distant moves, high
acceptance probability.

m Potential energy
U(z) = —log7(z), auxiliary
momentum p ~ exp(—K(p)),
simulate for ¢ € R along
Hamiltonian flow of
H(p,z) = K(p) + U(z),
using operator

b7

86K 6 0U &

Op 0z Oz Op

m Numerical simulation (i.e.
leapfrog) depends on gradient
information.

4/66

Goal 2: adaptive hamiltonian monte carlo

Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.

Can you learn an HMC sampler? 5/66

The exponential family

The exponential family in in R¢

p(w)zexp< n o, T(z) >— A(n) 9o()
~—

N—— e N——
natural sufficient log base
parameter startistic normaliser measure

Examples:
m Gaussian density: T'(z) = [z 2 }
m Gamma density: T'(z) = [Inz «z]

Can we extend this to infinite dimensions?

6/66

The kernel exponential family

Kernel exponential families [canu and smola (2006), Fukumizu (2000)] and their
G‘P Counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P = {pi(2) = V¥4 gy(a), o € 0, f € F)

where
F = {f eEH : A(f) :log/ef(z)qo(:z:) dz < oo}

7/66

The kernel exponential family

Kernel exponential families [canu and smola (2006), Fukumizu (2000)] and their
G‘P Counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P = {pi(2) = V¥4 gy(a), o € 0, f € F)

where

:{fG’H:A log/ d,:n<oo}

Finite dimensional RKHS: one-to-one correspondence between finite
dimensional exponential family and RKHS.

m Example: Gaussian kernel, T'(z) = [r z°] = ¢(z) and
k(z,y) = zy + z%y°

7/66

Fitting an infinite dimensional exponential family

Given random samples, Xj,..., X, drawn i.i.d. from an unknown
density, po := pf, € P, estimate po

8/66

How not to do it: maximum likelihood

Maximum likelihood:

n
=a a lo X;
fur rgr};lg;c; g ps(Xi)

n
= argmafo(Xi) — nlog/ e/ go(z) dz.
fer i3

9/66

How not to do it: maximum likelihood

Maximum likelihood:

n
=a a lo X;
fur rgr};legg g ps(Xi)

n
= argmafo(Xi) — nlog/ e/ go(z) dz.
fer i3

Solving the above yields that fjs; satisfies

2 2 0(@) = [o(@pn(e) ds

where py,, = d]};f)c’m.

Ill posed for infinite dimensional ¢(z)!

9/66

Score matching

Journal of Machine Leaming Research 6 (2005) 695-708 Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models
by Score Matching

Aapo Hyviirinen AAPO.HYVARINEN @HELSINKI.FI

Helsinki Institute for Information Technology (BRU)
Department of Computer Science
FIN-00014 University of Helsinki, Finland

Editor: Peter Dayan

Loss is Fisher Score:
Dr(po, pr) / po(2) ||V log po(z) — V4 log ps(z)||* da
Domain is ©: open subset of R? with piecewise smooth boundary

00 := Q\Q,

10/66

Score matching (general version)

Assuming ps to be twice differentiable (w.r.t. z) and
J po(2)| V2 log ps(2)||? dz < 00, VO € ©

Dr(po, pr) /po z) ||V log po(z) — V. log ps(z)|| dz
é/ Z“’: <alogpf()>2+3210gpf($) i
~\2 oz dz?
/ Halogpo()
*3

where partial integration is used in (a) under mild conditions:

1 po continuously extendible to €.
2 kernel k twice continuously differentiable on €2 x Q with continuous extension of 8k to
Q x Q for |af < 2.

3 0;0;44k(z,z)po(z) =0 for z € 8Q and +/8;8;+4k(z, z)po(z) = o(HzH;_d) as z € Q,
I}z — oo, Vi € [d].

‘dm

11/66

Score matching: 1-D proof

Dr(po, py)

/ (dlogpo z) dlogpf(cv))Qdm
2 dz

12/66

Score matching: 1-D proof

Dr(po, pf)
2/ (dlogpo z) dlogpf()>2dm

:;/tlpo(:z:) (dlogio) dz + - / (dlogpf)>2dm

_pro(m)<d10gd§f()) (dlogdzo()> iz

12/66

Score matching: 1-D proof

Dr(po, py)

2/ (dlogpo z) dlogpf()>2dm
2

L (S g (S0

_/abpo(m)<d10gd§f()) (dlogdzo()) iz

Final term:

/ o (dlogpf)) (dlogdg;o(a:)>d$

12/66

Score matching: 1-D proof

Dr(po, pf)
2/ (dlogpo z) dlogpf()>2dm

:;/tlpo(:z:) (dlogio) dz + / (dlogpf))zdm

_/abpo(m)<d10gd§f()) (dlogdzo()) iz

Final term:

/ o (dlogpf)) (dlogdg;o(a:)>d$

- [ty (D) D

12/66

Score matching: 1-D proof

Dr(po, py)

/ (dlogpo dlogpf()>2dm
3

_ / (dlogpo)d—l—/ (dlogpf)2dm
dz

B (leng)dlogpo)

Final term

(dlogpf)
_/M<d10gpf 2(/}%@;}3)

[(dlog pf > / d2 log p¢(z
—_— p .

dz?

d log po(z >

Relation to KL

Relation between Fisher score and KL:
Proposition B.1 Let p and q be probability densities defined on R®. Define p; = p *

N(0,tI;) and g, := q* N(0,tI;) where N(0,tI;) denotes a normal distribution on RY with
mean zero and diagonal covariance with t > 0. Suppose p; and q; satisfy
Oipe(x) logpy(x) = o (|lz]13) , Bipi(x)logqu(w) = o ([|x]|3) and ;log qu(2)pi(x) = o (||=]|5)
as ||z||2 = oo for all i € [d] where « =1 —d. Then
o0
KLl = [Iola)ar B.1)
where J is defined in (3).

Sriperumbudur, Fukumizu, G, Hyvarinen, Kumar, JMLR (2017), but effectively from Lyu (2009)

13/66

Empirical score matching

Py, represents n i.i.d. samples from Py

310gpf(X)>2 8° log ps(Xa)
Dy (pn, pf) ZZ<2(3z, 3 +C

alzl i

Since Dp(pn, pr) is independent of A(f),
fr = argmin Dr(pn, py)

is well posed, unlike the MLE.

14/66

Empirical score matching

P, represents n i.i.d. samples from Py

310gpf(X)>2 8° log ps(Xa)
Dy (pn, pf) ZZ<2< 3z, 3 +C

alzl i

Since Dp(pn, pr) is independent of A(f),
fr = argmin Dr(pn, py)

is well posed, unlike the MLE.

Add extra term A|[f||3, to regularize.

14/66

A kernel solution
Infinite exponential family:
Thus

2 logps(a) = o, 9(2)) + o108 ao().

15/66

A kernel solution
Infinite exponential family:
Thus

2 logps(a) = o, 9(2)) + o108 ao().

Kernel trick for derivatives: %f() = <f, %(p(X)>HDot product
between feature derivatives:

K (X) 9 (x") —Lk(x X'
azlii(p ! ij v o N 3$¢3:Bd+j !

15/66

A kernel solution
Infinite exponential family:
Thus

2 logps(a) = o, 9(2)) + o108 ao().

Kernel trick for derivatives: % f(X) = < f, %(p(X)>HDot product
between feature derivatives:

K (X) 9 (x") —67213(){ X'
3:13@'(p ! a:L‘j v o N c’):z:l-azrdﬂ !

By representer theorem:

d n d
S 6‘”) a% >0 (85k(Xe,)0 log ao(Xe) + 02k(Xs, "))

=1j=1 =1j5=1

15/66

A kernel solution
The RKHS solution

d 8k (z Xg)

fﬁ '+§Z:§Z:ﬂ@

{=1j=1

Need to solve a linear system

*

Gxx +nAl s = —hx
——

ndxnd

(hx)(a1)ats, = (€ Bik(aa))

Very costly in high dimensions!

0.2
-0.4

-0.6

0.4

0.2

16/66

The Nystrom approximation

Nystrom approach for efficient solution

m Find best estimator f; ,, in Hy := span {0:k(Ya, ')}ag[m],iqd] , Where
Yo € {z;}]; chosen at random.

m Nystrom solution:

t
Brm = — 1p} Bxy + X Gyy | hy
n,m n XY

ndxmd mdxmd

Solve in time O(nm?d?), evaluate in time O(md).

Sill cubic in d, but similar results if we take a random dimension per
datapoint.

18/66

Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

m Rates of convergence: Suppose
fo € R(CP) for some 8 > 0.
)\ = nimax{é’m} asn — oo.
Then)
L2
Dr(po, pf.) = Opo (n_mln{372(ﬁ+1)}>

19/66

Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

m Rates of convergence: Suppose
* fo € R(CP) for some B > 0.

— max{

i 1
e A=n 3’2<ﬁ+1>}asn—>oo.

Then)
- f2
Dr(po, pf.) = Opo <n_mln{372(ﬁ+1)}>

m Convergence in other metrics: KL, Hellinger, L,,1 < r < 00.

19/66

Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

m Suppose
fo € R(CP) for some B > 0.
Number of subsampled points m = Q(n? logn) for
6 = (min(28,1) +2)7* € [3,]
A= @5) asn o oo,
m Then

DF(pO:pfn,m) — OPO (n_min{g’Z(ﬂil)})

20/66

Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

m Suppose
fo € R(CP) for some B > 0.
Number of subsampled points m = Q(n? logn) for
6 = (min(28,1) +2)7* € [3,]
A= @5) asn o oo,
m Then

DF(pO:pfn,m) — OPO (n_min{g’Z(ﬂil)})

m Convergence in other metrics: KL, Hellinger, L,,1 < r < co. Same
rate but saturates sooner.
Original (all samples) KL saturates at Oy, (n™3)
Nystrom saturates at Op, (n_i)

20/66

A competing method: denoising autoencoder

What Regularized Auto-Encoders Learn from the
Data-Generating Distribution

Guillaume Alain GUILLAUME.ALAINQUMONTREAL.CA
Yoshua Bengio YOSHUA.BENGIO@QUMONTREAL.CA

m Train a denoising autoencoder with Gaussian noise o
m Normalized reconstruction error estimates the score:

ro(z) —
re(z) =2 — V3 log po(z)

ro(z) is reconstruction of noisy z via encoder/decoder

21/66

A competing method: denoising autoencoder

What Regularized Auto-Encoders Learn from the
Data-Generating Distribution

Guillaume Alain GUILLAUME.ALAINQUMONTREAL.CA
Yoshua Bengio YOSHUA.BENGIO@QUMONTREAL.CA

Train a denoising autoencoder with Gaussian noise o
Normalized reconstruction error estimates the score:

ro(z) —
re(z) =2 — V3 log po(z)

ro(z) is reconstruction of noisy z via encoder/decoder

Requirements for consistency: autoencoder has infinite capacity and

is at global optimum
In practice: o is like a bandwidth, have to tune it

21/66

Experimental results: ring

200

150

100

22/66

Experimental results: comparison with autoencoder

Score

m Comparison with regularized

auto-encoders [Alain and Bengio

(JMLR, 2014)] %=
m n=>500 training points e

full

nystrom, m = 42

nystrom, m = 167
dae, m = 100
dae, m = 5000

23/66

Experimental results: grid of Gaussians

Sample:

Score:

24/66

Experimental results: comparison with autoencoder

500 -

Score

m Comparison with regularized

auto-encoders [Alain and Bengio

(JMLR, 2014)] %=
m n=>500 training points e

full

nystrom, m = 42

nystrom, m = 167
dae, m = 100
dae, m = 5000

25/66

The kernel conditional exponential
family

The kernel conditional exponential family

m Can we take advantage of the
graphical structure of
(X1, .y X4)?

m Start from a general
factorization of P

Conditional densities PYIX

Xy X2)

parents
of)(;

m Estimate each factor
independently

27/66

Kernel conditional exponential family

General definition, kernel conditional exponential family

[Smola and Canu, 2006]

) = el HEnn=Al2) g () — log / go(y) e V@)% gy

(joint feature map ¥(z,v))

pr(ylz

28/66

Kernel conditional exponential family

Our definition, kernel conditional exponential family:

py(ylz) = et (10940 gy (y) log/q el

linear in the sufficient statistic ¢(vy) € G.

29/66

Kernel conditional exponential family

Our definition, kernel conditional exponential family:

pi(ylz) = et (g—A02) gy () 1Og/q ofeb(v))g

linear in the sufficient statistic ¢(v) € G.

What would be the joint RKHS feature map ¢(z,y) ?

30,/66

Kernel conditional exponential family

What does the joint RKHS look

like? [Micchelli and Pontil, (2005)]

(fé,¢(y)>g

31/66

Kernel conditional exponential family

What does the joint RKHS look

like? [Micchelli and Pontil, (2005)]

(fI: ¢(y)>g
— (T f, 6(1)) I : H— G alinear
’ g operator evaluating f at =

31/66

Kernel conditional exponential family

What does the joint RKHS look

like? [Micchelli and Pontil, (2005)]

<f5,¢(y)>g
= (T2, ¢(v))g

m[, : G— His a linear

. operator.
={fil= ¢(y),>H m The feature map
¥(z,0) Y(z,v) =Tap(y)

31/66

Kernel conditional exponential family

What does the joint RKHS look

like? [Micchelli and Pontil, (2005)]
m[, : G— His alinear

(fz: 0(V))g operator.

= (TLf, d(v))g m The feature map

= (f; Pz¢(y)>H ¢($’ y) = Fx¢(y)
m m Simplest case:

I'y = Igk(z,-) and
P2¢(y) = ¢(y)k(z,)

31/66

What is our loss function?

The obvious approach: minimise

Dr [po(z)po(ylz)llpo(z)ps (y|z)]

Problem: the expression still contains [po(y|z)dy.

32/66

What is our loss function?

The obvious approach: minimise

Dr [po(z)po(ylz)llpo(z)ps (y|z)]

Problem: the expression still contains [po(y|z)dy

Our loss function:

Br(po, 1) i= [Dalpo(ylo)lIps(y]2))m(a)ds

for some 7(z) that includes the support of p(z).

32/66

Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS I', = Igk(z,).

I, : G—H
Tep(y) = ¢(y)k(z,)

33/66

Finite sample estimate of the conditional density
Use the simplest operator-valued RKHS I', = Igk(z,).

I, : G—H
Tep(y) = ¢(y)k(z,)
Solution:
n d N
Fiylz) =570 Bk, Xo)0: 5y, V) + af
b—=1:1=—1
where

By = —; (G+nAl) 'h
(G)(a,i)(b.5) =k(Xa, X5)0:0; 1 aR(Ya, Y3),
and (¢(v), d(v'))g = S, v').

33/66

Expected conditional score: a failure case

m P(Y|X =1)

~

34/66

Expected conditional score: a failure case

m P(Y|X =1)
s P(Y|X = -1)

~

34/66

Expected conditional score: a failure case

m P(Y|X =1)
m P(Y|X =-1)
m P(Y)=4(P(Y|X =1)+ P(Y|X =-1))

AN

~

34/66

Expected conditional score: a failure case

m P(Y|X =1)
m P(Y|X =-1)
m P(Y)=4(P(Y|X =1)+ P(Y|X =-1))

AN

Dp(p(vlz),p(y)) =0
~——— N~
target model

~

34/66

Expected conditional score: a failure case

Why does it fail? Recall

Dr(po(ylz), ps(y|z)) == /W(m)DF(po(yl-’E),pf(ylx))dw
Note that

Dr(p(ule = 1, p(u)) = [plvle = 1) Vylogr(ule = 1) = Vyp(w)I dy

target model

Model p(y) puts mass where target conditional p(y|z = 1) has no
support.

m Care needed when this failure mode approached!

35/66

Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.

m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Parkinsons Red Wine
Dimension 15 11
Samples 5875 1599

36/66

Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.
m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

m LSCDE model: with consistency guarantees [sugiyama et a1, (2010)]
m RNADE model: mixture models with deep features of parents, no
guarantees [uria et al. (2016)]

37/66

Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.
m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

m LSCDE model: with consistency guarantees [sugiyama et a1, (2010)]

m RNADE model: mixture models with deep features of parents, no
guarantees [uria et al. (2016)]

Negative log likelihoods (smaller is better, average over 5 test/train
splits)

Parkinsons Red wine

KCEF 286+0.77 11.8+0.93
LSCDE 15.89+148 1443+15
NADE 3.63+£0.0 9.98 £ 0.0

37/66

Results: unconditional model

Red Wine Parkinsons
Data ’ - . . . Data
61 KEF : KEF
4 -
. 21
~ 21 ' 9
x ¢ <
0 - v X
0 -
_2 _
_4 -
_6 T T T T T _2 i T
-6 -4 -2 O 2 4 -1 1
X6 X15

38,/66

Results: conditional model

Red Wine Parkinsons
) Data
61 KCEF
4 -
2 .
2 -
L 2
0 - X
0 .
_2 . .
4 Data *
KCEF 5] .
_6 T T T T T T
-6 -4 -2 0 2 4 -1 1
X6 X15

39/66

Deep kernel infinite exponential
models

A famous quote

"Combining a deep architecture with a kernel
machine that takes the higher-level learned
representation as input can be quite powerful."”

41/66

A famous quote

"Combining a deep architecture with a kernel
machine that takes the higher-level learned
representation as input can be quite powerful."”

Y. Bengio and Y. LeCun (2007)

41/66

The case for nonstationary (learned) kernels

Stationary kernels, nonstationary target:

1.50 A A

n = true pdf
105 - |”| ~ = KEF-G

I kernel
1.00 A INI

R\
0.75 - I\

i

0.50 A
0.25 A
0.00 A

42/66

The case for nonstationary (learned) kernels

Nonstationary kernels, nonstationary target:

- true pdf
- = DKEF
=== kernel

The model class

Nonstationary kernels, nonstationary target:

Given a dataset D := {z,}}_,, empirical score matching loss is

1 .
J(pe, D) == — Z Z [Bd log B¢ () + 5 (9 log ps(zn))?
n=1d=1

The model has a natural parameter f and sufficient statistic k(zx, -):

br(z) = exp (f(2)) qo(=) = exp ((, k(,))%) qo(2)-

Define a “lite” model of the form:

k.
fa,z . Z amkw(2zm, ")

where w are the kernel parameters (next slide).

44/66

Kernel design

Kernel of the form:

k _5 ! 2
o(@,9) = 3 e (= 60.2) — 60 W)

¢, are made up of L = 3 fully connected layers.

m For L > 1, skip connection directly to the top layer (L > 3 hard to
train due to second derivatives)

m Softplus nonlinearity, log(1 + exp(z)): model is twice-differentiable,
score well-defined.

m Same architecture and a linear kernel: performance was much worse.

45/66

The “lite” model
Regularised loss to fit model f)f;,z:

N D
- - 2
I(fa oM D) = J(B5.0 D) + llad? + 32 5 D [8310g B, . (2n)]
- n=1

2 2N
~——— d=1
unreg. loss £5 reg.
curvaturereg.
Comparison to earlier exponential family loss:
m The regulariser -#||||? is essential.
m Earlier work: primarily regularized with || fo’i .|I3,- As we change k,

however, ||f||% changes meaning.

46,/66

The “lite” model
Regularised loss to fit model f)’g" 4

N D
- - 2
I(fa oM D) = J(B5.0 D) + llad? + 32 5 D [8310g B, . (2n)]
- n=1

2 2N
~——— d=1
unreg. loss £5 reg.
curvaturereg.
Comparison to earlier exponential family loss:
m The regulariser -#||||? is essential.
m Earlier work: primarily regularized with || fo’i .|I3,- As we change k,

however, ||f||% changes meaning.

« ” N D 2 =k 2.
m The “curvature” term Ao > ;1 > 41 [Bd log pa,z(mn)} is from
Kingma and LeCun (2010), but it rarely makes a difference (small
improvement on one dataset).

46,/66

The weights « are solutions to a linear system

Nonstationary kernels, nonstationary target:
Minimiser of f](f,f’z, , D) obtained in O(M2ND + M?3) time,

1 N D
Gmm = N Z Z 8ak(Tn, 2m) Bak(Tn, 2m)
n=1d=1
1 N D
Unm,m' = N Z Z 63"3(3777., Zm) aﬁk(l’n, Zm')
n=1d=1
1 N D
b = N >0 85k(xn, zm) + 84108 qo(xn) Bak(Tn, Zm)
n=1d=1

+>\C‘6§ IOg QO(fEn) aczik(mn; zm)'

47/66

The algorithm

The challenge: we are optimising over many things:

m the locations of the inducing points, z

m The parameters w of the convolutional features ¢, including kernel
weights p,.

m The regularisation coefficients and

m The coefficients o themselves.

What doesn’t work: joint optimisation over w, a, A\. Kernels collapse
to delta functions.

48/66

The algorithm

The challenge: we are optimising over many things:

m the locations of the inducing points, z
m The parameters w of the convolutional features ¢, including kernel
weights p,.
m The regularisation coefficients and
m The coefficients o themselves.
What doesn’t work: joint optimisation over w, a, A\. Kernels collapse
to delta functions.

We split the data: D = {D1, D2}.
m Stage 1: D5 is used to monitor convergence while optimising w and
z.
m Stage 2: D is used to define a validation loss on which to optimise «
and

48/66

Stage 1: learning w and z

Fitting regulariser, inducing point:
While J (f)gf fuwy2,D1) ,» D2) still improving do
m Sample disjoint data subsets D;, D, C D,

m Express natural parameter using inducing points,
f() = Zﬂm/lzl Olm() kw: Z, Dt)kw(zﬂh)

., solved on training data D;.

m Define unregularised validation loss on D,:

|Dy| D

. 1
= 5 2 1 |G + 50ar o))’

n=1d=1

m Take SGD steps in J for w, A, and optionally z.

49/66

Stage 2: refinement of A

Once kernel parameters w and inducing points learned, refine solution
on o and A:

While 3(;523 w2 Dr),2» D2) still improving do

27
m Express natural parameter using inducing points, this time solving
on all Dl)f(): %zlam(,kw,Z,Dl)kw(Zm,')

m Define unregularised validation loss on D5,

v ot 2
7= 1D, ;1 dz::l [adf(x") + (0l ()

m Take SGD steps in J for A only.

50/66

What works, what doesn’t work, and why

“The usual suspects™

Funnel Banana Ring Sqaure Cosine
-3.44 -3.49 -3.25 -3.58 -3.49

" elOle |17

51/66

What works, what doesn’t work, and why

Learned kernels vs fixed kernels:

ple]O] e |#

-3.48, 0.21 -3.53, 0.05 -3.27, 0.16 -3.64, 4.58 -3.63, 1.27

KEF-G

DKEF-G-15

52/66

What works, what doesn’t work, and why

MADE with mixture of Gaussians:

MO |7

-3.46, 0.34 -3.50, 0.05 -3.32, 1.39 -3.63, 2.82 -3.54, 1.77

Definition of MADE (Masked Autoencoder for Distribution
Estimation):

MADE-MOG

D
p(z) = [p(za|z<a),
d=1

each probability a mixture of Gaussians with parameters deep features
of x4 (this variant called MADE-MOG).

53/66

What works, what doesn’t work, and why

MAF (masked autoregressive flow)

LM c]Ol+ |7

Definition of masked autoregressive flow:

p(@i[x1:i-1) = N (@] s, (exp @:)?)
Bi = Ju, (X1:i-1)
Qi = fo,(X1:0-1)
z; = u; exp(a;) + i

Depth: output of model is used as noise input u; for the next layer.

54/66

What works, what doesn’t work, and why

MAF (masked autoregressive flow) with mixture of Gaussians

-3.45, 0.28 -3.50, 0.09 -3.38, 1511.26 -3.63, 4.49 -3.54,3.49 T

of masked autoregressive flow:

MAF-MOG

p(ilx1:i-1) = N (il ps, (exp a;)?)
pi = fu,(X1:-1)
i = fo,(X1:0-1)
T, = u; exp(o) +
Depth: output of model is used as noise input u; for the next layer.

MAF-MOG: stacked five-deep, using MADE-MOG with C = 10
Gaussian components as base density u;. 54/66

Two simple datasets

Disconnected mixture of two Gaussians, and bullseye:

55/66

truth

How does MAF do?

Disconnected mixture of two Gaussians, and bullseye:

MAF

56/66

How does kernel exponential family do?

Disconnected mixture of two Gaussians, and bullseye:

-2.20, 0.035 -4.10, 0.94 -3.85, 0.8

--|0je

-2.37, 0.018 -10.67, 0.45 -3.86, 0.88

. - ./es

KEF-G

DKEF-G-15

Solutions, kernel Stein discrepancy and log likelihood

Once kernel parameters w and inducing points learned, refine solution

on @ and A:
RedWine (D=11)

WhiteWine (D=11)

Parkinsons (D=15)

i 0 ~
z 0.1 *
Go2 ' . 0.5
D 2w . i e R, o
gOO g oy o 22 . 0.0 Lo e Fa A L R 0.0 s M T g OF
'8 . -12 ‘ - x
ety L b o B T N e e
g o e B S S
51 % y £ ‘
B -16
$ F O & LR £ K O & LR £ & O & LR
% \a Q < \a N\ < \a Q
F NS F N F S F NS
9 \a 9 ¥ 9 ¥
\a W \a W \s W
N S N

58/66

Application: adaptive Hamiltonian
Monte Carlo

Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is likelihood not computable?

60,/66

Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is likelihood not computable?

m GPC model: latent process f, labels y, (with covariate matrix X),
and hyperparameters 8:

p(f,y,6) = p(9)p(£]6)p(y|f)
£|6 ~ N(0, Ky) GP with covariance Ky

60,/66

Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is likelihood not computable?

m GPC model: latent process f, labels y, (with covariate matrix X),
and hyperparameters 8:

p(f,y,8) = p(6)p(£6)p(ylf)
£|6 ~ N(0, Ky) GP with covariance Ky
m Automatic Relevance Determination (ARD) covariance:
d
1

(:Bz s zl)2
o . _ 4 NS TS

60,/66

Bayesian Gaussian process classification

Our case: target 7(-) and log gradient not computable -
Pseudo-Marginal MCMC

When is likelihood not computable?

m GPC model: latent process f, labels y, (with covariate matrix X),

and hyperparameters 8:
p(f,y,0) = p(6)p(f|0)p(y|f)
£|6 ~ N(0, Ky) GP with covariance Ky

m Automatic Relevance Determination (ARD) covariance:
d

i T (@ — g,
(Ka)sj = K(XZ’XJ‘H) = eXp (2 sz::l exp(fs)

m p(y|f) = [Ti=; p(vi|f(z:)) where

p(uilf(z:)) = (1 —exp(-wif (=) ", wie{-1,1}

60,/66

Bayesian Gaussian process classification

Example: when is target not computable?

m Gaussian process classification, latent process f

p(6ly) o p(O)p(v16) = p(6) [p(FI0)p(yF,6)df =: 7(6)
. but cannot integrate out f

m Metropolis Hastings ratio:

N p(0")p(y|0)q(8]6')
a(6,0) = min 1, p(8)p(y/8)a(0'}6) |

m Pseudo-Marginal MCMC: unbiased estimate of p(y|6) via importance
Sampling: [Filippone & Girolami, (2013)]

b p(f)]6)

B(0y) o pOR(Y19) % p(0) 3 p(yIEN P
WP =1

61,/66

Bayesian Gaussian process classification

Example: when is target not computable?

m Gaussian process classification, latent process f

p(6ly) o p(O)p(v16) = p(6) | p(FI0)p(vIE,6)dt =: 7(6)
. but cannot integrate out f

m Estimated MH ratio:

N P®)p(y1)a(6]6)
a(0,9) = min {1, p(©)3(v10)a(8) |

m Replacing marginal likelihood p(y|f) with unbiased estimate p(y|68)

still results in correct invariant distribution (Beaumont (2003); Andrieu &
Roberts (2009)]

61,/66

Adaptive HMC

Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.

Can you learn an HMC sampler? 62,66

Basic adaptive Metropolis-Hastings

Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.

107

MMD from ground truth

0 1000 2000 3000 4000 5000

Iterations

Significant improvements over random walk 63/66

Efficiency gains from approximate solution

HMC and aceptane rates for 90% quantiles

Acceptance rate

< =
=~ (=]
1 1

<
b
1

e
[e=}
1

full
nyst. —
lite
dae

m =10 100 500

64,/66

Co-authors

From Gatsby:
Michael Arbel

Kevin Li

m Heiko Strathmann
Dougal Sutherland

External collaborators:

m Kenji Fukumizu

m Bharath Sriperumbudur

Questions?

65,66

66,66

