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Outline
Motivating application:

Fast estimation of complex multivariate densities

The infinite exponential family:

Multivariate Gaussian ! Gaussian process
Finite mixture model ! Dirichlet process mixture model
Finite exponential family ! ???

Application:

Adaptive HMC for Pseudo-Margial MCMC (likelihood not
computable), or amortized HMC

In this talk:
Fitting of the infinite dimensional exponential family using score
matching Sriperumbudur, Fukumizu, G, Hyvarinen, Kumar, JMLR (2017)

Guaranteed speed improvements by Nystrom
Sutherland, Hyvarinen, Arbel, G., AISTATS (2018)

Conditional models Arbel, G., AISTATS (2018)

Deep infinite exponential family Li, Sutherland, Strathmann, G., ??? (2023)
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Goal 1: learn high dimensional, complex densities
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We want:

Efficient computation and representation
Statistical guarantees
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Goal 2: adaptive hamiltonian monte carlo
HMC: distant moves, high
acceptance probability.

Potential energy
U (x ) = � log �(x ), auxiliary
momentum p � exp(�K (p)),
simulate for t 2 R along
Hamiltonian flow of
H (p; x ) = K (p) +U (x ),
using operator

@K
@p

@

@x
�
@U
@x

@

@p

Numerical simulation (i.e.
leapfrog) depends on gradient
information.
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Goal 2: adaptive hamiltonian monte carlo
Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.
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The exponential family

The exponential family in in Rd

p(x ) = exp

0BBBBBBBB@
*

�|{z}
natural

parameter

; T (x )| {z }
sufficient
startistic

+
� A(�)| {z }

log
normaliser

1CCCCCCCCA
q0(x )| {z }
base

measure

Examples:

Gaussian density: T (x ) =
h

x x 2
i

Gamma density: T (x ) =
h
ln x x

i
Can we extend this to infinite dimensions?
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The kernel exponential family

Kernel exponential families [Canu and Smola (2006), Fukumizu (2009)] and their
GP counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P =
n
pf (x ) = ehf ;'(x )iH�A(f )q0(x ); x 2 
; f 2 F

o
where

F =

�
f 2 H : A(f ) = log

Z
e f (x )q0(x ) dx <1

�

Finite dimensional RKHS: one-to-one correspondence between finite
dimensional exponential family and RKHS.

Example: Gaussian kernel, T (x ) =
h

x x 2
i
= '(x ) and

k(x ; y) = xy + x 2y2
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Fitting an infinite dimensional exponential family

Given random samples, X1; : : : ;Xn drawn i.i.d. from an unknown
density, p0 := pf0 2 P, estimate p0
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How not to do it: maximum likelihood

Maximum likelihood:

fML = argmax
f 2F

nX
i=1

log pf (Xi )

= argmax
f 2F

nX
i=1

f (Xi )� n log
Z

e f (x )q0(x ) dx :

Solving the above yields that fML satisfies

1
n

nX
i=1

'(xi ) =

Z
'(x )pfML(x ) dx

where pfML = dPML
dx .

Ill posed for infinite dimensional '(x )!
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Score matching

Loss is Fisher Score:

DF (p0; pf ) :=
1
2

Z



p0(x ) krx log p0(x )�rx log pf (x )k2 dx

Domain is 
: open subset of Rd with piecewise smooth boundary
@
 := 
n
,
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Score matching (general version)
Assuming pf to be twice differentiable (w.r.t. x ) andR

p0(x )krx log pf (x )k2 dx <1; 8 � 2 �

DF (p0; pf ) :=
1
2

Z
p0(x ) krx log p0(x )�rx log pf (x )k2 dx

(a)
=

Z
p0(x )

dX
i=1

 
1
2

�
@ log pf (x )

@xi

�2

+
@2 log pf (x )

@x 2
i

!
dx

+
1
2

Z
p0(x )

@ log p0(x )
@x

2 dx

where partial integration is used in (a) under mild conditions:
1 p0 continuously extendible to 
.
2 kernel k twice continuously differentiable on 
�
 with continuous extension of @�;�k to


� 
 for j�j � 2.
3 @i@i+dk(x ; x )p0(x ) = 0 for x 2 @
 and

p
@i@i+dk(x ; x )p0(x ) = o(kxk1�d

2 ) as x 2 
,
kxk2 !1; 8i 2 [d ].
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Score matching: 1-D proof

DF (p0; pf )

=
1
2

Z b

a
p0(x )

�
d log p0(x )

dx
�

d log pf (x )
dx

�2

dx

DF (p0; pf )

=
1
2

Z b

a
p0(x )

�
d log p0(x )

dx
�

d log pf (x )
dx

�2

dx

=
1
2

Z b

a
p0(x )

�
d log p0(x )

dx

�2

dx +
1
2

Z b

a
p0(x )

�
d log pf (x )

dx

�2

dx

�
Z b

a
p0(x )

�
d log pf (x )

dx

��
d log p0(x )

dx

�
dx

Final term:Z b

a
p0(x )

�
d log pf (x )

dx

��
d log p0(x )

dx

�
dx

=

Z b

a ���p0(x )
�

d log pf (x )
dx

� 
1

���p0(x )
dp0(x )

dx

!
dx

=

��
d log pf (x )

dx

�
p0(x )

�b
a
�
Z b

a
p0(x )

d2 log pf (x )
dx 2 :
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Relation to KL

Relation between Fisher score and KL:

Sriperumbudur et al.

A.5 Interpolation Space

In this section, we briefly recall the definition of interpolation spaces of the real method.
To this end, let E0 and E1 be two arbitrary Banach spaces that are continuously embedded
in some topological (Hausdor↵) vector space E . Then, for x 2 E0 + E1 := {x0 + x1 : x0 2
E0, x1 2 E1} and t > 0, the K-functional of the real interpolation method (see Bennett
and Sharpley, 1988, Definition 1.1, p. 293) is defined by

K(x, t, E0, E1) := inf{kx0kE0 + tkx1kE1 : x0 2 E0, x1 2 E1, x = x0 + x1}.

Suppose E and F are two Banach spaces that satisfy F ,! E (i.e., F ⇢ E and the inclusion
operator id : F ! E is continuous), then the K-functional reduces to

K(x, t, E, F ) = inf
y2F

kx � ykE + tkykF . (A.6)

The K-functional can be used to define interpolation norms, for 0 < ✓ < 1, 1  s  1 and
x 2 E0 + E1, as

kxk✓,s :=

(�R �
t�✓K(x, t)

�s
t�1 dt

�1/s
, 1  s < 1

supt>0 t�✓K(x, t), s = 1.

Moreover, the corresponding interpolation spaces (Bennett and Sharpley, 1988, Definition
1.7, p. 299) are defined as

[E0, E1]✓,s := {x 2 E0 + E1 : kxk✓,s < 1} .

B. Appendix: Miscellaneous Results

In this appendix, we present the proofs of some claims that we made in Sections 1, 4 and 5.

B.1 Relation between Fisher and Kullback-Leibler Divergences

The following result provides a relationship between Fisher and Kullback-Leibler diver-
gences.

Proposition B.1 Let p and q be probability densities defined on Rd. Define pt := p ⇤
N(0, tId) and qt := q ⇤ N(0, tId) where N(0, tId) denotes a normal distribution on Rd with
mean zero and diagonal covariance with t > 0. Suppose pt and qt satisfy

@ipt(x) log pt(x) = o (kxk↵2 ) , @ipt(x) log qt(x) = o (kxk↵2 ) and @i log qt(x)pt(x) = o (kxk↵2 )

as kxk2 ! 1 for all i 2 [d] where ↵ = 1 � d. Then

KL(pkq) =

Z 1

0
J(ptkqt) dt, (B.1)

where J is defined in (3).

48
Sriperumbudur, Fukumizu, G, Hyvarinen, Kumar, JMLR (2017), but effectively from Lyu (2009)
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Empirical score matching

pn represents n i.i.d. samples from P0

DF (pn ; pf ) :=
1
n

nX
a=1

dX
i=1

 
1
2

�
@ log pf (Xa)

@xi

�2

+
@2 log pf (Xa)

@x 2
i

!
+C

Since DF (pn ; pf ) is independent of A(f ),

f �n = argmin
f 2F

DF (pn ; pf )

is well posed, unlike the MLE.

Add extra term �kf k2H to regularize.
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A kernel solution
Infinite exponential family:

pf (x ) = ehf ;'(x )iH�A(f )q0(x )

Thus
@

@x
log pf (x ) =

@

@x
hf ; '(x )iH +

@

@x
log q0(x ):

Kernel trick for derivatives: @
@xi

f (X ) =
D
f ; @

@xi
'(X )

E
H
Dot product

between feature derivatives:*
@

@xi
'(X );

@

@xj
'(X 0)

+
H

=
@2

@xi@xd+j
k(X ;X 0)

By representer theorem:

f �n =
nX
`=1

dX
j=1

�`j
@'(X`)

@xj
+ �

1
n

nX
`=1

dX
j=1

�
@j k(X`; �)@j log q0(X`) + @2j k(X`; �)

�
| {z }

�̂
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A kernel solution
The RKHS solution

f �n (x ) = ��̂(x )+
nX
`=1

dX
j=1

�`j
@k(x ;X`)

@xj

Need to solve a linear system

0B@GXX| {z }
nd�nd

+ n�I

1CA��n =
1
�
hX

(hX )(a�1)d+i ; :=
D
�̂; @ik(xa)

E
Very costly in high dimensions!

-5 0 5

x
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-0.4

-0.2

0
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f(
x
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The Nystrom approximation
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Nystrom approach for efficient solution

Find best estimator f �n ;m in HY := span f@ik(ya ; �)ga2[m ];i2[d ] ; where
ya 2 fxig

n
i=1 chosen at random.

Nystrom solution:

��n ;m = �

0B@ 1
n

B>
XY BXY| {z }

nd�md

+ � GYY| {z }
md�md

1CA
y

hY

Solve in time O(nm2d3), evaluate in time O(md):
� Sill cubic in d , but similar results if we take a random dimension per

datapoint.
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Consistency: original solution

Define C as the covariance between feature derivatives. Then from
[Sriperumbudur et al. JMLR (2017)]

Rates of convergence: Suppose
� f0 2 R(C �) for some � > 0.

� � = n�max
�

1
3 ;

1
2(�+1)

	
as n !1:

Then
DF (p0; pfn ) = Op0

�
n�min

�
2
3 ;

�

2(�+1)

	�

Convergence in other metrics: KL, Hellinger, Lr ; 1 < r <1.
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Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

Suppose
� f0 2 R(C �) for some � > 0.
� Number of subsampled points m = 
(n� logn) for
� = (min(2�; 1) + 2)�1 2

� 1
3 ;

1
2

�
� � = n�max

�
1
3 ;

1
2(�+1)

	
as n !1:

Then
DF (p0; pfn;m ) = Op0

�
n�min

�
2
3 ;

�

2(�+1)

	�

Convergence in other metrics: KL, Hellinger, Lr ; 1 < r <1. Same
rate but saturates sooner.

� Original (all samples) KL saturates at Op0

�
n�

1
2

�
� Nystrom saturates at Op0

�
n�

1
3

�
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A competing method: denoising autoencoder

Train a denoising autoencoder with Gaussian noise �
Normalized reconstruction error estimates the score:

r�(x )� x
�

! rx log p0(x )

� r�(x ) is reconstruction of noisy x via encoder/decoder

Requirements for consistency: autoencoder has infinite capacity and
is at global optimum
In practice: � is like a bandwidth, have to tune it
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Experimental results: ring

Sample:
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Experimental results: comparison with autoencoder

3 5 7 9

d
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Comparison with regularized
auto-encoders [Alain and Bengio
(JMLR, 2014)]

n=500 training points
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Experimental results: grid of Gaussians
Sample:
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Experimental results: comparison with autoencoder
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The kernel conditional exponential
family
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The kernel conditional exponential family
Can we take advantage of the
graphical structure of
(X1; :::;Xd)?

Start from a general
factorization of P

P(X1; :::;Xd)

=
Y
i

P(Xi j X�(i)| {z }
parents
of Xi

)

Estimate each factor
independently
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Kernel conditional exponential family
General definition, kernel conditional exponential family
[Smola and Canu, 2006]

pf (y jx ) = ehf ; (x ;y)iH�A(f ;x )q0(y) A(f ; x ) = log
Z

qo(y)ehf ; (x ;y)iHdy

(joint feature map  (x ; y))
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Kernel conditional exponential family
Our definition, kernel conditional exponential family:

pf (y jx ) = ehfx ;�(y)iG�A(f ;x )q0(y) A(f ; x ) = log
Z

qo(y)ehfx ;�(y)iG

linear in the sufficient statistic �(y) 2 G.
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Kernel conditional exponential family
Our definition, kernel conditional exponential family:

pf (y jx ) = ehfx ;�(y)iG�A(f ;x )q0(y) A(f ; x ) = log
Z

qo(y)ehfx ;�(y)iG

linear in the sufficient statistic �(y) 2 G.

What would be the joint RKHS feature map  (x ; y) ?
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Kernel conditional exponential family

What does the joint RKHS look
like? [Micchelli and Pontil, (2005)]

hfx ; �(y)iG
= h��x f ; �(y)iG
= hf ;�x�(y)| {z }

 (x ;y)

iH

��x : H ! G a linear
operator evaluating f at x
�x : G ! H is a linear
operator.

The feature map
 (x ; y) := �x�(y)

�x : G ! H is a linear
operator.

The feature map
 (x ; y) := �x�(y)

Simplest case:
�x = IGk(x ; �) and
�x�(y) = �(y)k(x ; �)
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What is our loss function?

The obvious approach: minimise

DF [p0(x )p0(y jx )kp0(x )pf (y jx )]

Problem: the expression still contains
R

p0(y jx )dy .

Our loss function:

eDF (p0; pf ) :=

Z
DF (p0(y jx )jjpf (y jx ))�(x )dx

for some �(x ) that includes the support of p(x ):
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Finite sample estimate of the conditional density
Use the simplest operator-valued RKHS �x = IGk(x ; �).

�x : G ! H

�x�(y) 7! �(y)k(x ; �)

Solution:

f �n (y jx ) =
nX

b=1

dX
i=1

�(b;i)k(x ;Xb)@iK(y ;Yb) + ��̂

where

��n = �
1
�
(G + n�I )�1 h

(G)(a ;i);(b;j ) =k(Xa ;Xb)@i@j+dK(Ya ;Yb);

and h�(y); �(y 0)iG = K(y ; y 0).
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Expected conditional score: a failure case

P(Y jX = 1)
P(Y jX = �1)
P(Y ) = 1

2(P(Y jX = 1) + P(Y jX = �1))

eDF (p(y jx )| {z }
target

; p(y)| {z }
model

) = 0
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Expected conditional score: a failure case
Why does it fail? Recall

eDF (p0(y jx ); pf (y jx )) :=
Z
�(x )DF (p0(y jx ); pf (y jx ))dx

Note that

DF (p(y jx = 1)| {z }
target

; p(y)| {z }
model

) =

Z
p(y jx = 1) kry log p(y jx = 1)�ryp(y)k2 dy

Model p(y) puts mass where target conditional p(y jx = 1) has no
support.

Care needed when this failure mode approached!
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Unconditional vs conditional model in practice

Red Wine: Physiochemical measurements on wine samples.

Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Parkinsons Red Wine
Dimension 15 11
Samples 5875 1599
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Unconditional vs conditional model in practice

Red Wine: Physiochemical measurements on wine samples.
Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

LSCDE model: with consistency guarantees [Sugiyama et al., (2010)]

RNADE model: mixture models with deep features of parents, no
guarantees [Uria et al. (2016)]

Negative log likelihoods (smaller is better, average over 5 test/train
splits)

Parkinsons Red wine

KCEF 2:86� 0:77 11:8� 0:93
LSCDE 15:89� 1:48 14:43� 1:5
NADE 3:63� 0:0 9:98� 0:0
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Results: unconditional model
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Results: conditional model
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Deep kernel infinite exponential
models
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A famous quote

"Combining a deep architecture with a kernel
machine that takes the higher-level learned
representation as input can be quite powerful."

Y. Bengio and Y. LeCun (2007)
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The case for nonstationary (learned) kernels

Stationary kernels, nonstationary target:
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The case for nonstationary (learned) kernels
Nonstationary kernels, nonstationary target:
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The model class
Nonstationary kernels, nonstationary target:
Given a dataset D := fxng

N
n=1; empirical score matching loss is

Ĵ (pθ;D) :=
1
N

NX
n=1

DX
d=1

�
@2d log ~pf (xn) +

1
2
(@d log ~pf (xn))

2
�

The model has a natural parameter f and sufficient statistic k(x ; �):

~pf (x ) = exp (f (x )) q0(x ) = exp (hf ; k(x ; �)iH) q0(x ):

Define a “lite” model of the form:

f k
α;z :=

MX
m=1

�mkw (zm ; �)

where w are the kernel parameters (next slide).
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Kernel design

Kernel of the form:

kw (x ;y) =
RX

r=1
�r exp

�
�

1
2�2r

kφwr (x )� φwr (y)k
2
�

φwr are made up of L = 3 fully connected layers.

For L > 1, skip connection directly to the top layer (L > 3 hard to
train due to second derivatives)

Softplus nonlinearity, log(1+ exp(x )): model is twice-differentiable,
score well-defined.

Same architecture and a linear kernel: performance was much worse.
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The “lite” model
Regularised loss to fit model ~pk

α;z :

Ĵ (f k
α;z ;λ;D) = Ĵ (~pk

α;z ;D)| {z }
unreg: loss

+
��

2
kαk2| {z }

`2 reg:

+
�C

2N

NX
n=1

DX
d=1

h
@2d log ~p

k
α;z (xn)

i2
| {z }

curvature reg:

Comparison to earlier exponential family loss:

The regulariser ��
2 kαk

2 is essential.
Earlier work: primarily regularized with �H kf k

α;z k
2
H. As we change k ,

however, kf kH changes meaning.

The “curvature” term �C
PN

n=1
PD

d=1

h
@2d log ~p

k
α;z (xn)

i2
is from

Kingma and LeCun (2010), but it rarely makes a difference (small
improvement on one dataset).
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The weights α are solutions to a linear system
Nonstationary kernels, nonstationary target:
Minimiser of Ĵ (f k

α;z ;λ;D) obtained in O(M 2ND +M 3) time,

α(λ; k ; z ;D) = � (G + ��I + �CU )�1 b

Gm ;m 0 =
1
N

NX
n=1

DX
d=1

@dk(xn ; zm) @dk(xn ; zm 0)

Um ;m 0 =
1
N

NX
n=1

DX
d=1

@2dk(xn ; zm) @2dk(xn ; zm 0)

bm =
1
N

NX
n=1

DX
d=1

@2dk(xn ; zm) + @d log q0(xn) @dk(xn ; zm)

+�C@
2
d log q0(xn) @

2
dk(xn ; zm):
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The algorithm
The challenge: we are optimising over many things:

the locations of the inducing points, z
The parameters w of the convolutional features φ, including kernel
weights �r .
The regularisation coefficients �C and ��
The coefficients α themselves.

What doesn’t work: joint optimisation over w ; �;λ. Kernels collapse
to delta functions.

We split the data: D = fD1;D2g.

Stage 1: D2 is used to monitor convergence while optimising w and
z .
Stage 2: D2 is used to define a validation loss on which to optimise α

and λ.
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Stage 1: learning w and z

Fitting regulariser, inducing point:
While Ĵ (~pkw

α(λ;kw ;z ;D1);z ;D2) still improving do

Sample disjoint data subsets Dt ;Dv � D1

Express natural parameter using inducing points,
f (�) =

PM
m=1 �m(λ; kw ; z ;Dt )kw (zm ; �)

� �m solved on training data Dt .

Define unregularised validation loss on Dv :

Ĵ =
1
jDv j

jDv jX
n=1

DX
d=1

�
@2d f (xn) +

1
2
(@d f (xn))

2
�

Take SGD steps in Ĵ for w , λ, and optionally z .
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Stage 2: refinement of λ

Once kernel parameters w and inducing points learned, refine solution
on α and λ:
While Ĵ (~pkw

α(λ;kw ;z ;D1);z ;D2) still improving do

Express natural parameter using inducing points, this time solving
on all D1, f (�) =

PM
m=1 �m(λ; kw ; z ;D1)kw (zm ; �)

Define unregularised validation loss on D2,

Ĵ =
1
jD2j

jD2jX
n=1

DX
d=1

�
@2d f (xn) +

1
2
(@d f (xn))

2
�

Take SGD steps in Ĵ for λ only.
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What works, what doesn’t work, and why

“The usual suspects”:
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What works, what doesn’t work, and why

Learned kernels vs fixed kernels:
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What works, what doesn’t work, and why

MADE with mixture of Gaussians:

Definition of MADE (Masked Autoencoder for Distribution
Estimation):

p(x ) :=
DY

d=1

p(xd jx<d);

each probability a mixture of Gaussians with parameters deep features
of x<d (this variant called MADE-MOG).
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What works, what doesn’t work, and why
MAF (masked autoregressive flow)

Definition of masked autoregressive flow:

p(xi jx1:i�1) = N (xi j�i ; (exp�i )
2)

�i = f�i (x1:i�1)

�i = f�i (x1:i�1)

xi = ui exp(�i ) + �i

Depth: output of model is used as noise input ui for the next layer.

MAF-MOG: stacked five-deep, using MADE-MOG with C = 10
Gaussian components as base density ui .
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What works, what doesn’t work, and why
MAF (masked autoregressive flow) with mixture of Gaussians

Definition
of masked autoregressive flow:

p(xi jx1:i�1) = N (xi j�i ; (exp�i )
2)

�i = f�i (x1:i�1)

�i = f�i (x1:i�1)

xi = ui exp(�i ) + �i

Depth: output of model is used as noise input ui for the next layer.
MAF-MOG: stacked five-deep, using MADE-MOG with C = 10
Gaussian components as base density ui . 54/66



Two simple datasets

Disconnected mixture of two Gaussians, and bullseye:
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How does MAF do?

Disconnected mixture of two Gaussians, and bullseye:
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How does kernel exponential family do?
Disconnected mixture of two Gaussians, and bullseye:
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Solutions, kernel Stein discrepancy and log likelihood

Once kernel parameters w and inducing points learned, refine solution
on α and λ:
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Application: adaptive Hamiltonian
Monte Carlo
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Bayesian Gaussian process classification
Our case: target �(�) and log gradient not computable -
Pseudo-Marginal MCMC
When is likelihood not computable?

GPC model: latent process f , labels y, (with covariate matrix X ),
and hyperparameters �:

p(f ;y; �) = p(�)p(f j�)p(yjf)

f j� � N (0;K�) GP with covariance K�

Automatic Relevance Determination (ARD) covariance:

(K�)ij = �(xi ;x0j j�) = exp

 
�
1
2

dX
s=1

(xi ;s � x 0j ;s)
2

exp(�s)

!

p(yjf) =
Qn

i=1 p(yi jf (xi )) where

p(yi jf (xi )) = (1� exp(�yi f (xi )))
�1; yi 2 f�1; 1g: 60/66
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Bayesian Gaussian process classification
Example: when is target not computable?

Gaussian process classification, latent process f

p(�jy) / p(�)p(yj�) = p(�)
Z

p(f j�)p(yjf ; �)df =: �(�)

: : : but cannot integrate out f

Metropolis Hastings ratio:

�(�; �0) = min
�
1;

p(�0)p(yj�0)q(�j�0)
p(�)p(yj�)q(�0j�)

�

Pseudo-Marginal MCMC: unbiased estimate of p(yj�) via importance
sampling: [Filippone & Girolami, (2013)]

p̂(�jy) / p(�)p̂(yj�) � p(�)
1

nimp

nimpX
i=1

p(yjf (i))
p(f (i)j�)
Q(f (i))

Estimated MH ratio:

�(�; �0) = min
�
1;

p(�0)p̂(yj�0)q(�j�0)
p(�)p̂(yj�)q(�0j�)

�
Replacing marginal likelihood p(yj�) with unbiased estimate p̂(yj�)
still results in correct invariant distribution [Beaumont (2003); Andrieu &
Roberts (2009)]
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Adaptive HMC
Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.
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Can you learn an HMC sampler? 62/66



Basic adaptive Metropolis-Hastings
Sliced posterior over hyperparameters of a Gaussian Process classifier
on UCI Glass dataset obtained using Pseudo-Marginal MCMC.
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Significant improvements over random walk 63/66



Efficiency gains from approximate solution

HMC and aceptane rates for 90% quantiles
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