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Abstract

We address a basic question in Bayesian analysis: Can updates of the posterior under
observations be represented as a closed-form mapping from the data to the posterior pa-
rameters? The question is closely related to the concept of a conjugate prior, but we do
not assume that prior and posterior belong to the same model class. We refer to models
for which a closed-form mapping exists as functionally conjugate, and ask which observation
models admit such functionally conjugate priors. For finite-dimensional, dominated models,
the answer is almost disappointingly restrictive: Under mild regularity assumptions, such a
mapping can only exist if the likelihood is an exponential family model. This is a consequence
of a more general result: In dominated models with strictly positive prior densities, existence
of a mapping to the posterior parameters of the Bayesian model implies the existence of a
sufficient statistic for the sampling model.

1 Introduction

One of the most widely used tools in Bayesian analysis are conjugate priors for exponential family
models. The definition of a conjugate prior (Raiffa and Schlaifer, 1961) in general demands
that, for a given observation model (likelihood), and a given class of priors, all corresponding
posteriors are again in the prior class. This property is known as closure under sampling. The
particular utility of conjugate priors in the exponential family case, however, is mostly due to
the fact that the parameters of the posterior given observations are a simple, known function
of the prior parameters and the data, making the posterior easily computable from a set of
observations. Due to their coincidence in exponential families, the two concepts are often used
interchangeably in the literature, but they are not equivalent: Closure under sampling does not
guarantee the existence of a mapping to the posterior parameters. In particular, the set of all
probability distributions on parameter space is, when used as the family of priors, conjugate to
any sampling model. On the other hand, a closed-form mapping to the posterior parameters
may presumably exist even if the models are not closed under sampling, i.e. if the posterior
belongs to a different parametric model class than the prior.

In the following, we study the implications of the existence of a mapping to the posterior
parameters – that is, of the assumption that there exists a parametric model containing all
possible posterior measures, and that the posterior parameters can be expressed as a measurable
function of the prior parameters and the data. We do not assume that the posterior and the
prior are elements of one and the same model class. A Bayesian model admitting such a mapping
will be referred to as functionally conjugate. Our main result shows that, in the dominated case
and under a mild regularity assumption on the prior family, the existence of such a mapping
implies the existence of a sufficient statistic for the observation model. The study of functionally
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conjugate models thereby essentially reduces to the well-studied subject of sufficient statistics.
In combination with Pitman-Koopman theory, which shows that dominated models admitting
a sufficient statistic of dimension bounded w.r.t. sample size are of exponential family type, a
particular implication is that if the parameter space of the posterior class has finite dimension,
then the likelihood term of a functionally conjugate Bayesian model is an exponential family
model.

For a rough overview of the problem, consider a Bayesian estimation problem involving data
values x1, x2, . . . generated from a parametric model PX(X|Θ). The data is assumed to be
conditionally i.i.d. given the true value of Θ. Given a prior distribution PΘ on the space of
parameter values, the objective of Bayesian inference is to compute the corresponding posterior
distribution, i.e. the conditional probability PΘ(Θ|X1 = x1, . . . , Xn = xn). Under suitable
conditions on the spaces and models involved, Bayes’ theorem guarantees that the density of
the posterior with respect to the prior can be expressed in terms of the density of PX(X|Θ): If
the density of the observation model is denoted f(x|θ), then

dPΘ(θ|X = x)
dPΘ

=
f(x|θ)∫

f(x|θ)dPΘ(θ)
. (1)

This density provides the formal means to actually compute the abstract object PΘ(Θ|X1 =
x1, . . . , Xn = xn) from the prior and the data. In order to do so, the integral in the denominator
has to be evaluated for the given sample. This innocuous-looking integration problem is not
solvable in general – for most choices of observation model and prior, no analytic solution exists,
and numerical solutions are feasible in low dimensions at best. For a small (but fortunately
important) subset of possible models, the integral admits a closed-form solution. In particular,
for the so-called natural conjugate priors in exponential family models, the application of the
density (1) to computation of the posterior leads to generic update equations for the posterior
parameters: The posterior is a parametric model of known form, and its computation requires
only the substitution of the data into a generic and easily evaluated formula. In this case, the
prior is also part of a parametric model, denoted PΘ(Θ|Y ) in the following. The parameter Y
of the prior is generally referred to as a hyperparameter in the literature. Denote the density of
the prior by g(θ|y). Assume that f(x|θ) is an exponential family density, and g(θ|y) the density
of its natural conjugate prior (definitions will be given below). Then for the prior specified by
some value y0 of Y , and n observations, the posterior has density g(θ|y = Tn(x1, . . . , xn, y0)),
where the function Tn is of known, generic form and can be computed from the model’s sufficient
statistics. The problem studied in the present paper is how the existence of such a mapping to the
posterior parameter can be formalized in a suitable manner, and for which model distributions
it can be expected to exist.

2 Background

Conjugacy and the existence of a closed-form mapping to the posterior parameters are two
different properties, and will have to be carefully distinguished for the purposes of this article.
The general definition of conjugate priors defines a class of priors as conjugate to an observation
model PX(X|Θ) if the resulting Bayesian model is “closed under sampling” (e.g. Lindley, 1972;
Robert, 1994): A prior and a sampling model are called conjugate if the posterior is an element
of the same model class as the prior, as exemplified by the exponential family case described
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above, where the posterior under prior g(θ|y0) is again of the form g(θ|y). Closure under
sampling is only of limited practical importance: In particular, it includes the trivial case in
which the prior class is the set of all probability distributions over the given parameter space,
which is apparently conjugate to any possible sampling model. Of actual practical importance
is the question whether the posterior parameters are a function of the data and the prior, and
whether this function is feasible to evaluate, resulting in a closed-form representation of the
posterior. Closure under sampling does not imply tractability of the posterior. In order to
clearly distinguish the two concepts, we will introduce the following terminology: Conjugacy
in the sense of closure under sampling will be referred to as algebraic conjugacy, as its defining
characteristic is membership of a distribution in a set. A model admitting a closed-form mapping
to the posterior parameters will be called functionally conjugate.

Definition 1. Let PX(X|Θ) a sampling distribution with parameter space Ωθ, and let M be a
set of prior distributions on Ωθ. Then the model PX( . |Θ) and the setM will be called conjugate
or algebraically conjugate if, for every prior measure PΘ ∈M and set of observation X = x, the
corresponding posterior is an element of M.

A formal definition of functional conjugacy will be given in Sec. 3. We will later address
the question for which parametric models a functionally conjugate prior can be expected to
exist. The remainder of the current section formalizes the mathematical setting and summarizes
two concepts relevant for our study of functionally conjugate models: Sufficient statistic for
parametric models, and the particular form of conjugate priors in exponential family models.
The latter are both algebraically and functionally conjugate.

2.1 Formal Setting

We will generally assume all involved random variables – the observation variable X, the pa-
rameter Θ and the hyperparameter Y – to take values in Polish sample spaces, i.e. complete,
separable and metrizable topological spaces. These will be equipped with their Borel algebras,
and the resulting measurable spaces are denoted (Ωx,Bx), (Ωθ,Bθ) and (Ωy,By) respectively. All
random variables are assumed to be defined on a common abstract probability space (Ω,A,P).
The models PX(X|Θ) and PΘ(Θ|Y ) are regular conditional probabilities of the corresponding
image measures PX = X(P) and PΘ = Θ(P). We do not require the spaces involved to be
finite-dimensional, but we will assume that the models PX(X|Θ) and PΘ(Θ|Y ) are dominated1.
This excludes some infinite-dimensional models which are not dominated, such as the Dirichlet
process. As usual in Bayesian analysis, observations will be assumed exchangeable, and in par-
ticular conditionally i.i.d. given the value of Θ. As a convenient side-effect, this will allow us to
treat only the case of a single observation without any loss of generality.

2.2 Sufficient Statistics

Conjugate models are inextricably linked with sufficient statistics, and we will have to briefly re-
view the concept of sufficiency in both classical and Bayesian models before discussing conjugate
models from a technical point of view.

1 We refer to a conditional probability, or any set of probability measures, as dominated if all measures in the
set are absolutely continuous w.r.t. a single, σ-finite measure.
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A sufficient statistic for a parametric model PX(X|Θ) is, intuitively speaking, a function of
the data summarizing all relevant information the data provides for estimation of the parameter.
Since the notion of providing information about the data has different meanings in the classical
and Bayesian approach, there are two different definitions of sufficiency.

Definition 2 (Classical Sufficiency). Let PX(X|Θ) be a parametric model on (Ωx,Bx) with
parameter space (Ωθ,Bθ). Let (Ωs,Bs) be a measurable Polish space, and S : Ωx → Ωs a
measurable map. Then S is called a classically sufficient statistic for PX(X|Θ) if there exists a
Markov kernel k : Bx × Ωs → [0, 1] such that

PX(A|Θ = θ, S = s) =a.e. k(A, s) (2)

for all A ∈ Bx, θ ∈ Ωθ and s ∈ S(Ωx). The a.e. equality is with respect to the image measure
S[PX( . |Θ = θ)] = PX(S−1 . |Θ = θ) of the sampling distribution under the map S.

In the Bayesian case, the notion of S providing all information contained in the data about
the parameter is formalized as complete determination of the posterior by the value of S.

Definition 3 (Bayesian Sufficiency). Let PX(X|Θ) be a parametric model and S : Ωx → Ωs a
measurable mapping as above. Then S is called a Bayesian sufficient statistic for the model if
the posterior PΘ(Θ|X) of the model under any prior PΘ on (Ωθ,Bθ) satisfies

PΘ(Θ|X = x) = PΘ(Θ|S = S(x)) PX-a.e. (3)

On Polish or Borel spaces, the two notions of sufficiency are equivalent if the model PX(X|Θ)
is dominated. In the undominated case, classical sufficiency always implies Bayesian sufficiency,
but the converse need not be true. The implication of a statistic being sufficient in the Bayesian,
but not classical sense is that the Bayesian model is unable to resolve at least some cases which
are distinguished as different by the classical model. Blackwell and Ramamoorthi (1982) give a
hypothesis testing example for which the two notions of sufficiency differ – with the consequence
that there is no classical test achieving zero error probability, whereas the Bayesian version of
the test does so with probability 1. The Bayesian is always certain to be right, the classical test
is always uncertain. An excellent, in-depth exposition of classical and Bayesian sufficiency is
given by Schervish (1995). Historically, the classical notion of sufficiency is due to Fisher (1922).
The Bayesian notion is attributed to Kolmogorov (1942).

The following well-known theorem characterizes dominated models which admit a sufficient
statistic and will be used below to construct the generic conjugate prior of an exponential family
model. In the form generally reproduced in the literature, it is due to Halmos and Savage (1949),
who attribute the result to Neyman (1935).

Theorem 1 (Neyman Factorization Theorem). Let PX(X|Θ) be a dominated parametric family
with conditional density p(x|θ). Then the model admits a classically sufficient statistic Sn (for
each sample size n) if and only if the density factorizes in the form

p(x|θ) = fn(x1, . . . , xn)gn(Sn(x1, . . . , xn), θ) (4)

for two suitable functions fn and gn.
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2.3 Canonical Conjugate Priors in Exponential Families

We will now consider the specific case in which PX( . |Θ) is an exponential family model. Let
PX(X|Θ) be a parametric model on a Polish measurable space (Ωx,Bx), for which the parameter
variable Θ takes values in Rd. Assume further that the model is dominated. The model is called
an exponential family model if its density w.r.t. to some dominating measure ν is of the form

p(x|θ) = exp
(
〈S(x)|θ〉 − φ(θ)− ψ(x)

)
, (5)

where S : Ωx → Rd is a measurable map, and φ and ψ are measurable real-valued functions. For
S and ψ given, φ(θ) = log

∫
e〈S(x)|θ〉−ψ(x)dν(x), and the parameter space of the model is defined

as the subset Ωθ ⊂ Rd for which φ(θ) <∞. The parameter space is always convex (application
of Hölder’s inequality to the integral φ gives φ(aθ1 +(1−a)θ2) ≤ aφ(θ1)+(1−a)φ(θ2)). By Th. 1
above, the statistic S is classically sufficient. In other words, an exponential family representation
always implies the existence of a sufficient statistic. Under mild regularity conditions, the
converse is also true. This is a result known (amongst other names) as the Pitman-Koopman
lemma, and it exists in a variety of flavors which differ in the choice of smoothness assumptions.
References include Darmois (1935); Pitman (1936); Koopman (1936); Barankin and Maitra
(1963); Hipp (1974); and many others. The following version is due to Harold Jeffreys.

Theorem 2 (Pitman-Koopman Lemma; Jeffreys (1961)). Let the random quantities X1, X2, . . .
be conditionally i.i.d. given the value of some random quantity Θ, and assume that the conditional
distribution PX(Xi|Θ) is dominated by a measure ν. Let p(x|θ) be the corresponding conditional
density. Assume further that the support of fX|θ is independent of the value of θ:

∀θ1, θ2 ∈ Ωθ : supp p( . |θ1) = supp p( . |θ2) ν-a.e. (6)

Then if there is a sufficient statistic Sn : Ωn
x → Ωs for each sample size n ∈ N, and if Ωs has

finite dimension, PX(X|Θ) is an exponential family model.

For data drawn conditionally i.i.d. (given θ) from an exponential family model, the data-
dependent terms in the exponent decompose additively over samples. This in turn implies that,
for any sample size n, the sufficient statistic Sn of the joint data distribution can be represented
as a sum involving only observation-wise application of the statistic S := S1:

Sn(x1, . . . , xn) =
n∑
i=1

S(xi) . (7)

It is well-known that exponential family models have conjugate priors of a generic form: Let
p(x|θ) be an exponential family density as above. Then a generic conjugate prior is given by
the density (w.r.t. Lebesgue measure on Rd)

p(θ|α, y) :=
1

K(α, y)
exp
(
〈θ|y〉 − αφ(θ)

)
, (8)

with hyperparameters α ∈ R+ and y ∈ Ωθ, and partition function K(α, y) =
∫
e〈θ|y〉−αφ(θ)dλd(θ).

The prior in (8) is often called the natural or canonical conjugate prior of p(x|θ).
The canonical conjugate prior can be derived by means of the Neyman factorization theorem,

as shown by DeGroot (1970). Assume that the model admits a sufficient statistic of fixed
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dimension w.r.t. sample size (which by the Pitman-Koopman lemma implies, up to regularity
conditions, that the model is of exponential family form). Now regard the functions gn( . , θ) as
a single function g(n, . , θ) and use it as the shape function of a probability model on Θ: Let
K(n, y) :=

∫
g(n, y, θ)dλd(θ), and define the prior density as

p(θ|n, y) :=
1

K(n, y)
g(n, y, θ) . (9)

Since the model is of exponential family form (5), the joint density of n observations x1, . . . , xn
is exp(〈

∑n
i=1 S(xi)|θ〉 − nφ(θ) −

∑n
i=1 ψ(xi)), hence g(n, y, θ) = exp(〈y|θ〉 − nφ(θ)), and so

1
K(n,y)g(n, y, θ) takes the form given in (8) with α = n. It is straightforward to verify that the
posterior corresponding to p(θ|α, y) under observations x1, . . . , xn has density

p(θ|x1, . . . , xn) ∝ exp
(〈
θ
∣∣∣y +

n∑
i=1

S(xi)
〉
− (α+ n)φ(θ)

)
, (10)

and so p(θ|x1, . . . , xn) = p(θ|α+ n, y +
∑
S(xi)). The generic form

λ 7→ λ+ n and y 7→
∑
i

S(xi) (11)

of the parameter updates is, in terms of calculus, of course due to the sample-wise application (7)
of the sufficient statistic, and the log-linearity of the model in the value of S. The consequence is
a linear geometry in parameter space: The images of observations under the sufficient statistic,
their averages, the parameters, and the hyperparameters all constitute points in the space Ωθ.
Posteriors are obtained by linear interpolation. The convexity of Ωθ guarantees its closure under
such interpolations. A result of Diaconis and Ylvisaker (1979) uses this linear arithmetic to
characterize the set of all conjugate priors in exponential families. They show, for the continuous
case, that conjugate priors are those for which the expectation of the sample mean with respect
to the posterior is linear.

Theorem 3 (Diaconis-Ylvisaker characterization of conjugate priors). Let PX( . |Θ) be a natural
exponential family model dominated by Lebesgue measure, with open parameter space Ωθ ⊂ Rd.
Let PΘ be a prior on Θ which does not concentrate on a singleton. Then PΘ has a density of
the form (8) w.r.t. Lebesgue measure on Rd if and only if

EPΘ(Θ|X1=x1,...,Xn=xn)

[
EPX(X|Θ=θ) [X]

]
=
y + nx̂

a+ n
. (12)

That is, given observations x1, . . . , xn, the expected value of a new draw x under unknown
value of the parameter is linear in the sample average x̂ = 1

n

∑
xi.

3 Functional Conjugacy

By the concept of functional conjugacy, we formalize the idea that posterior updates in Bayesian
inference can be computed can be represented as updates of the posterior parameters. Therefore,
(i) the set of posteriors must be representable as a parameterized family of models and (ii) there
must be a mapping which, given the prior, takes the data to the corresponding value of the
posterior parameter.
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Formal definition. Assume that the sample space Ωx, the parameter space Ωθ and the space Ωy

of prior hyperparameters are Polish and equipped with their respective Borel algebras. Let the
sampling model PX(X|Θ) and the prior family PΘ(Θ|Y ) be regular conditional probabilities on
Ωx and Ωθ, respectively. Write PΘ(Θ|X,Y ) for the posterior of PX(X|Θ) under prior PΘ(Θ|Y ).
If we assume all three conditional models to be dominated, with densities f(x|θ) (likelihood),
g(θ|y) (prior) and p(θ|x, y) (posterior) respectively, functional conjugacy can be formalized as
follows: There is function q(θ|t), parameterized by t in some set Ωt, and a mapping T (x, y) with
values in Ωt, such that

p(θ|x, y) = q(θ|T (x, y)) (13)

for all possible values of x, y and θ. For a definition that does not rely on densities, we have to
substitute q by a parameterized probability measure πt. The Bayesian assumption that parame-
ters are random variables has direct consequences for the formalization of both requirements (i)
and (ii): The parameterized measure πt representing the posterior must be a conditional prob-
ability. Since Ωθ is Polish, this conditional probability has a regular version. Since the value
of T substitutes for a random variable, and is conditioned upon, it must itself be interpretable
as a random variable, and so the mapping T must be measurable. In summary, we obtain the
following general definition.

Definition 4. Let PX(X|Θ) and PΘ(Θ|Y ) be regular conditional probabilities. Let PΘ(Θ|X,Y )
be the posterior of PX(X|Θ) under prior PΘ(Θ|Y ). The two models will be called functionally
conjugate if there exists a regular conditional probability π : Bθ ×Ωt → [0, 1], parameterized on
a measurable Polish space (Ωt,Bt), and a measurable map T : Ωx × Ωy → Ωt, such that

PΘ(A|X = x, Y = y) = π(A, T (x, y)) for all A ∈ Bθ . (14)

We have already discussed the natural conjugate priors of exponential family models in the
previous section. Such models with their natural conjugate priors are examples of both types
of conjugacy: Algebraic, because the posterior is in the same model class as the prior, and
functional, because they admit a closed-form mapping to the posterior parameters. In this
particular case, the posterior index T is given by the mapping

T (x, (λ, y)) = (λ+ 1, y + S(x)) . (15)

Relation to sufficiency. Obviously, the definition is closely related to that of classical suffi-
ciency (Def. 2), though the conditional on the left of Eq. (14) is the posterior rather than the
sampling model. The definition admits a sampling interpretation similar to that of classical
sufficiency: Given the value of T (but not the data), we can sample from the posterior as if we
knew the data. From a technical point of view, the definition expresses this requirement – that
the posterior only resolves information in the data that is resolved by T – by demanding the
posterior to be measurable w.r.t. the σ-algebra generated by the mapping T : Fix one particular
prior, i.e. one value y0 ∈ Ωy of the hyperparameter, and write Ty0(x) := T (x, y0) for the result-
ing mapping from data to posterior parameters. The posterior of a given event A ∈ Bθ under
observation X = x is the conditional expectation E[IA|X = x, Y = y0]. The definition requires
this to be equivalently expressible as

E[IA|X = x, Y = y0] = E[IA|T = Ty0(x)] = E[IA|T = . ] ◦ Ty0 ◦X(ω) , (16)
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where ω is an element of the abstract probability space Ω. Since E[IA|T = . ] is a Bt-measurable
function, this makes the overall posterior σ(X ◦ Ty0)-measurable. An arbitrary (non-conjugate)
posterior is measurable w.r.t. σ(X). Since in σ(X ◦ Ty0) ⊂ σ(X), this can be regarded as
a coarsening of the conditional information available to determine the posterior. In the case
of algebraic conjugacy, the posterior is an element of the class PΘ(Θ|Y ) of priors, and can be
completely determined by specifying an appropriate value y for the hyperparameter Y . Algebraic
conjugacy therefore makes the posterior σ(Y )-measurable.

Whereas functional conjugacy somewhat resembles classical sufficiency, there is a more direct
relationship between functional conjugacy and the Bayesian notion of sufficiency (cf Def. 3). The
key difference between the two concepts is that Bayesian sufficiency requires the posterior to be
determined by the statistic under any prior. In contrast, the definition above only guarantees
a complete determination of those posteriors which are derived from the prior family PΘ(Θ|Y ).
Interestingly, under mild regularity conditions, this already implies the complete determination
of the posterior under any prior. The following theorem states that, for dominated families,
conjugacy implies sufficiency if the prior densities do not vanish anywhere on parameter space.

Theorem 4 (Conjugate models admit sufficient statistics). Let PX(X|Θ) and PΘ(Θ|Y ) be two
dominated parametric families on Borel spaces (Ωx,Bx) and (Ωθ,Bθ), and functionally conjugate
with posterior index T . If PΘ(Θ|Y = y) has a strictly positive density for all y ∈ Ωy with respect
to some dominating measure on Ωθ, then the function Ty0( . ) := T ( . , y0) is a sufficient statistic
for PX(X|Θ) for all y0 ∈ Ωy.

Discussion of assumptions. The regularity condition (strict positivity of the prior densities)
in particular requires that the prior densities have identical support. This is a similar requirement
to that of the Pitman-Koopman lemma, though the former is imposed on the sample space Ωx

and the latter on parameter space Ωθ. Without a suitable regularity condition, it is possible
to construct pathological examples of conjugate models that do not yield a sufficient statistic:
Consider for instance the a set of priors consisting of all Dirac measures on the parameter
space Ωθ, for some smooth sampling distribution. Then for every Dirac concentrated at some
θ ∈ Ωθ, the posterior is again the same Dirac measure, regardless of the observations. The
class is therefore conjugate. Since the Dirac measures are parameterized by their position, the
identity mapping IdΩθ completely determines the posterior parameter. Apparently, this does
not imply that IdΩθ (which does not even depend on the data) is a sufficient statistic for the
sampling distribution. However, such examples only exist in cases where the prior is in some way
degenerate. To illustrate the condition of strict positivity of the prior density, note that if, on the
other hand, the parameter space Ωθ were to consist of only a single value, the mapping T would
still be trivial – but so would be the sampling model, which consists only of a single measure.
Roughly speaking, the size of the parameter space bounds both the possible complexity of the
sampling model and of the mapping T . In order to ensure that T carries sufficient information
about the sampling distribution, we have to ensure that no part of the parameter space is
“blotted out” by prior assumption. The theorem could, in this regard, be formulated the other
way around: For a parametric family of priors with arbitrary (possibly vanishing) densities, Ty0

is sufficient for the model obtained from PX(X|Θ) by restricting the set of parameters to the
common support ∩y∈Ωysupp

(
g( . |y)

)
of all prior densities, and restricting the priors accordingly.

Consequences for finite-dimensional models. Combination of Th. 4 with the Pitman-
Koopman lemma (Th. 2) implies that – if the regularity conditions of both theorems are satisfied
– functional conjugacy occurs only in exponential families.
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Corollary 1. Let PX(X|Θ) and PΘ(Θ|Y ) be two dominated parametric models with strictly
positive conditional densities. Assume that the space Ωt of posterior parameters has finite di-
mension. Then if PX(X|Θ) and PΘ(Θ|Y ) are functionally conjugate, PX(X|Θ) is an exponential
family model.

4 Proof of Theorem 4

Considering the close connection between functional conjugacy and Bayesian sufficiency, it will
come as no surprise that the same technique can be used in the proof, though the technical details
differ. The idea is to establish classical sufficiency for the observation model by constructing
the parameter-independent regular conditional probability required by the definition, and then
express it in terms of the functionally conjugate posterior to show that it depends on the data
only through the posterior index T . A similar construction can be used to proof that Bayesian
sufficiency implies classical sufficiency (Blackwell and Ramamoorthi, 1982; Schervish, 1995). The
proof idea is originally derived from Halmos and Savage (1949, proof of Theorem 1). The same
is true for the representation (18) below, which is due to the proof establishing that a dominated
set of measures has an equivalent countable subset (Halmos and Savage, 1949, Lemma 7).

Proof (Theorem 4). By definition, sufficiency of Ty0 for PX(X|Θ) requires the existence of a
Markov kernel k : Bx × Ωy → [0, 1] such that

PX(A|Θ = θ, Ty0 = t) =a.e. k(A, t) . (17)

We will construct a candidate kernel k and then show that it satisfies Eq. (17). To define k, we
note that the family PX(X|Θ) is dominated by assumption. According to Halmos and Savage
(1949), this implies existence of a measure ρ on (Ωx,Bx) such that (i) µX|θ � ρ � νX and (ii)
ρ has a representation as a countable convex combination of measures in the family. That is,

ρ =
∑
i∈N

ciPX( . |Θ = θi) (18)

for some countable sequences (θi)i∈N of parameters in Ωθ and (ci)i∈N of mixture weights, where∑
i∈N ci = 1. We define k as the conditional probability given T w.r.t. the measure ρ:

k(A, t) := Eρ [IA|T = t] . (19)

Formally, this is the conditional expectation E[Xρ|T = t] of a random variable Xρ which gen-
erates the measure ρ, that is ρ = Xρ(P). To show that k satisfies (17), we have to show
that k behaves like the conditional probability PX(A|Θ = θ, Ty0 = t), i.e. that it integrates as
PX(A|Θ = θ, Ty0 = t) does w.r.t. the measures PX( . |Θ = θ).

To show this, we will have to manipulate an integral over k, using the properties of conditional
expectations. Since k is defined w.r.t. ρ, the integral measure PX( . |Θ = θ) has to be expressed in
terms of ρ as dPX(x|Θ = θ) = h(x, θ)dρ(x). For the density h to be compatible with Eρ [IA|Ty0 ]
under the integral, the function h( . |θ) must be measurable w.r.t. the σ-algebra generated by
T ( . , y), and so we will have to show that h can be represented as a function which depends on
x only through T .
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Step 1: Expressing h as a function of T . By assumption, both families PX( . |Θ = θ) and
PΘ( . |Y = y) are dominated. Let νX and νΘ be dominating measures, and denote the respective
conditional densities as

f( . |θ) :=
dPX( . |Θ = θ)

dνX
and g( . |y) :=

dPΘ( . |Y = y)
dνΘ

. (20)

By functional conjugacy,

π(A, T (x, y)) =a.e. PΘ(A|X = x, Y = y) . (21)

We first have to argue that the conditional probability π(A, T (x, y)) has a density w.r.t. to νΘ.
Without loss of generality, we can assume that range(T ) = Ωt, i.e. the function value π(A, t)
for any t can be expressed as the posterior for some values x and y. (Otherwise, restrict the
function π(A, . ) to T (Ωx×Ωy), equipped with the trace σ-algebra Bt∩T (Ωx×Ωy), which makes
the restriction measurable.) The posterior is dominated by the prior and the prior by νΘ, such
that π is dominated by νΘ according to (21). The density of the measure π( . , t) w.r.t. to νΘ

will be denoted as q(x|t) in the following.
By the chain rule, the density of PX( . |Θ = θ) (for any θ) with respect to ρ is

dPX( . |Θ = θ)
dρ

=
f( . |θ)∑

i∈N cif( . |θi)
. (22)

Since both families are dominated, the Bayes’ theorem is applicable, and the density of the
posterior is

dPΘ

dνΘ
(θ|X = x, Y = y) =a.e.

f(x|θ)g(θ|y)
F (x, y)

, (23)

where F (x, y) =
∫

Ωθ
f(x|θ)g(θ|y)dνΘ(θ). The “almost everywhere” in (23) is due to the fact

that the integral F ( . , y) in the Bayes theorem may take values {0,∞} on a null set. Since the
model is conjugate, the posterior density can be expressed as

dPΘ(θ|X = x, Y = y)
dνΘ

= q(θ|T (x, y)) . (24)

The regularity assumption on g (that g does not vanish anywhere on Ωθ) guarantees that the
quotient (22) can be expressed in terms of the posterior and the prior: Since g is non-zero
everywhere, the Bayes equation (23) can be solved for f , and substitution into (22) gives

dPX(x|Θ = θ)
dρ

=
q(θ|T (x, y))F (x,y)

g(θ|y)∑
i ciq(θi|T (x, y))F (x,y)

g(θi|y)

=
q(θ|T (x, y))

g(θ|y)
∑

i ci
q(θi|T (x,y))
g(θi|y)

=: h(y, θ, T (x, y)) . (25)

Zero values of the denominator can occur, but only on a ρ-null set: Let M0 be the set of all x for
which the denominator vanishes. Since g is strictly positive, x ∈M0 implies

∑
i ciq(θi|T (x, y)) =

0. Hence, as q(θ|T (x, y)) only vanishes if f(x|θ) = 0,

M0 = {x|f(x|θi) = 0 for all θi} . (26)

Since f is measurable and (ci)i∈N countable, M0 is measurable, and with (18),

ρ(M0) =
∫
M0

dρ

dνX
(x)dνX(x) =

∫
M0

∑
i

cif(x|θi)dνX(x) = 0 . (27)

10
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As a density, h can be modified on a ρ-null set, and we set h(y, θ, T (x, y)) = 0 whenever x ∈M0.
Step 2: The kernel k satisfies Eq. (17). What remains to be shown is that k(A, t) is a version
of the conditional probability PX(A|Θ = θ, T = t) for all θ ∈ Ωθ. Formulated on the abstract
probability space (Ω,A,P), that means proving that for any A ∈ A,∫

B
PX(A|Θ, Ty0)(ω)dP(ω) =

∫
B
k(A, . ) ◦ Ty0 ◦XdP(ω) for all B ∈ σ(Ty0 ◦X) . (28)

This is equivalent to showing, on Ωx rather than Ω, that∫
T−1
y0

(C)
PX(A|Θ = θ, Ty0 = Ty0(x))dPX(x|Θ = θ) =

∫
T−1
y0

(C)
k(A, . ) ◦ Ty0(x)dPX(x|Θ = θ) (29)

for all A ∈ Bx, θ ∈ Ωθ and C ∈ By. The integral on the left-hand side is PX(A∩T−1
y0

(C)|Θ = θ),
for which in turn

PX(A ∩ T−1
y0

(C)|Θ = θ) =
∫
A∩T−1

y0
(C)

dPX(x|Θ = θ) . (30)

According to (25)
dPX(x|Θ = θ) = h(y0, θ, . ) ◦ Ty0dρ(x) , (31)

so the integral can be rewritten as∫
A∩T−1

y0
(C)

dPX(x|Θ = θ) =
∫
T−1
y0

(C)
IA(x)h(y0, θ, . ) ◦ Ty0dρ(x) . (32)

Let σ(Ty0) = T−1
y0

(By) ⊂ Bx. By the basic properties of conditional expectations, if Z is any
σ(Ty0)-measurable, non-negative numerical random variable, then∫

D
IA(x)Z(x)dρ(x) =

∫
D

Eρ [IA(x)|σ(Ty0)]Z(x)dρ(x) for all D ∈ σ(Ty0) . (33)

(Note: This is where the fact that h depends on x only through Ty0(x) becomes relevant.) Since
h(y, θ, . ) is By-measurable, h(y, θ, . ) ◦ Ty0 is measurable w.r.t. σ(Ty0), and non-negative as h is
a density. Hence∫

T−1
y0

(C)
IA(x)h(y0, θ, . ) ◦ Ty0dρ(x) =

∫
T−1
y0

(C)
Eρ [IA|σ(Ty0)] (x)h(y0, θ, . ) ◦ Ty0dρ(x)

=
∫
T−1
y0

(C)
Eρ [IA|Ty0 = . ] ◦ Ty0(x)h(y0, θ, . ) ◦ Ty0dρ(x)

=
∫
T−1
y0

(C)
k(A, . ) ◦ Ty0dPX(x|Θ = θ) .

(34)

Thus, the Markov kernel k satisfies Eq. (17), and Ty0 = T ( . , y0) is a sufficient statistic for the
parametric model PX(X|Θ).

The intuitive notion that the posterior is completely determined by the mapping Ty0 finds
its technical expression in the measurability assumption used in Eq. (33): Dependence on Ty0

rather than X corresponds to measurability (in the abstract probability space Ω) w.r.t. the
coarser σ-algebra σ(Ty0 ◦ C) rather than σ(X). The fact that h can be expressed as a function
which depends only on Ty0 , and hence is σ(Ty0 ◦ X)-measurable, means that we can achieve
equality in (33) by conditioning IA only on σ(Ty0 ◦X) (which yields the kernel k), rather than
conditioning on all of σ(X) (which would require the original posterior).
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