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PARAMETERS AND PATTERNS

Parameters

P(X|θ) = Probability[data|pattern]

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

20 Regression
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Figure 2.5: (a) Data is generated from a GP with hyperparameters (�, σf , σn) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale �, the signal variance σ2

f

and the noise variance σ2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the effects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (�, σf , σn) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.

Inference idea

data = underlying pattern + independent noise

Peter Orbanz & Yee Whye Teh 3 / 71



TERMINOLOGY

Parametric model
I Number of parameters fixed (or constantly bounded) w.r.t. sample size

Nonparametric model

I Number of parameters grows with sample size

I ∞-dimensional parameter space

Example: Density estimation
20 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure 2.9: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on
the mean µ. The red ellipses show lines of equal probability density of the Gaussian.

being merely σ2 times the identity matrix I. Geometrically, this corresponds to the
situation in which the samples fall in equal-size hyperspherical clusters, the cluster
for the ith class being centered about the mean vector µi. The computation of the
determinant and the inverse of Σi is particularly easy: |Σi| = σ2d and Σ−1

i = (1/σ2)I.
Since both |Σi| and the (d/2) ln 2π term in Eq. 47 are independent of i, they are
unimportant additive constants that can be ignored. Thus we obtain the simple
discriminant functions

gi(x) = −‖x − µi‖2

2σ2
+ ln P (ωi), (48)

where ‖ · ‖ is the Euclidean norm, that is,Euclidean
norm

‖x − µi‖2 = (x − µi)
t(x − µi). (49)

If the prior probabilities are not equal, then Eq. 48 shows that the squared distance
‖x − µ‖2 must be normalized by the variance σ2 and offset by adding ln P (ωi); thus,
if x is equally near two different mean vectors, the optimal decision will favor the a
priori more likely category.

Regardless of whether the prior probabilities are equal or not, it is not actually
necessary to compute distances. Expansion of the quadratic form (x − µi)

t(x − µi)
yields

gi(x) = − 1

2σ2
[xtx − 2µt

ix + µt
iµi] + ln P (ωi), (50)

which appears to be a quadratic function of x. However, the quadratic term xtx is
the same for all i, making it an ignorable additive constant. Thus, we obtain the
equivalent linear discriminant functionslinear

discriminant

gi(x) = wt
ix + wi0, (51)

where

Parametric

8 CHAPTER 4. NONPARAMETRIC TECHNIQUES
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Figure 4.3: Examples of two-dimensional circularly symmetric normal Parzen windows
ϕ(x/h) for three different values of h. Note that because the δk(·) are normalized,
different vertical scales must be used to show their structure.

p(x)
p(x) p(x)

Figure 4.4: Three Parzen-window density estimates based on the same set of five
samples, using the window functions in Fig. 4.3. As before, the vertical axes have
been scaled to show the structure of each function.

and

lim
n→∞

σ2
n(x) = 0. (18)

To prove convergence we must place conditions on the unknown density p(x), on
the window function ϕ(u), and on the window width hn. In general, continuity of
p(·) at x is required, and the conditions imposed by Eqs. 12 & 13 are customarily
invoked. With care, it can be shown that the following additional conditions assure
convergence (Problem 1):

sup
u

ϕ(u) < ∞ (19)

lim
‖u‖→∞

ϕ(u)

d∏

i=1

ui = 0 (20)

Nonparametric
Peter Orbanz & Yee Whye Teh 4 / 71



NONPARAMETRIC BAYESIAN MODEL

Definition

A nonparametric Bayesian model is a Bayesian model on an∞-dimensional
parameter space.

Interpretation
Parameter space T = set of possible patterns, for example:

Problem T
Density estimation Probability distributions

Regression Smooth functions
Clustering Partitions

Solution to Bayesian problem = posterior distribution on patterns

[Sch95]Peter Orbanz & Yee Whye Teh 5 / 71



REGRESSION
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GAUSSIAN PROCESSES

Nonparametric regression
Patterns = continuous functions, say on interval [a, b]:

θ : [a, b]→ R T = C[a, b]

Gaussian process prior
I Hyperparameters: Mean function and covariance function

m ∈ C[a, b] and k : [a, b]× [a, b]→ R

I Plug in finite set s = {s1, . . . , sn} ⊂ [a, b]:

m(s) =

m(s1)
...

m(sn)

 and k(s, s) =

k(s1, s1) . . . k(s1, sn)
...

...
k(sn, s1) . . . k(sn, sn)


I Distribution of θ is Gaussian process if

(θ(s1), . . . , θ(sn)) ∼ N
(
m(s), k(s, s)

)
for any s ⊂ [a, b]n

[RW06]Peter Orbanz & Yee Whye Teh 7 / 71



GAUSSIAN PROCESS REGRESSION

Observation model
I Inputs s = (s1, . . . , sn)

I Outputs t = (t1, . . . , tn)

ti ∼ N
(
θ(si), σnoise

)
Posterior distribution

I Posterior is again a Gaussian Process

I Quantifies prediction uncertainty

Predictions at test points s∗
Test inputs s∗ = (s∗1, . . . , s∗m)

m̂ = k(s∗, s)
(
k(s, s) + σ2

noiseI
)−1t

k̂ = k(s∗, s∗)− k(s∗, s)
(
k(s, s) + σ2

noiseI
)−1k(s, s∗)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is �

f
f∗

�
∼ N

�
0,

�
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

��
. (2.18)

If there are n training points and n∗ test points then K(X, X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

a b

Prior and Posterior
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Predictive distribution:

p(y∗|x∗ x y) ∼ N
�
k(x∗ x)�[K + σ2

noiseI]
−1y

k(x∗ x∗) + σ2
noise − k(x∗ x)�[K + σ2

noiseI]
−1k(x∗ x)

�

Rasmussen (Engineering, Cambridge) Gaussian Process Regression August 30th - September 10th, 2009 23 / 62
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LEARNING CONTROL (C. E. RASMUSSEN & M. P. DEISENROTH)

Peter Orbanz & Yee Whye Teh 9 / 71



CLUSTERING
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CLUSTERING
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FINITE MIXTURE MODELS

Standard probabilistic model for clustering

I For each observation i = 1, . . . , n:

Data: xi|zi = k ∼ F(φk)

Cluster indicator: zi ∼ w

I Parameters:

Mixing proportions: w ∼ Dirichlet
(α

K
, . . . ,

α

K

)
Cluster parameters: φ∗k ∼ H

Learning and model selection

I For each K = 1, 2, 3, . . .:
I While learning not converged:

I Update latent variables;
I Update parameter.

I Determine fit of model with K clusters.

zi

α

H

xi

w

k = 1 . . . K

i = 1 . . . n

φ∗
k

Peter Orbanz & Yee Whye Teh 12 / 71



PARTITIONS

Natural object of inference in clustering problems

I A cluster c is a subset of indices [n] = {1, . . . , n}.
I A partition π is a set of clusters.

I Clusters are non-empty and disjoint;
I Union of clusters is [n].

x1 x2 x3 x4 x5 x6 x7

π = {{1, 6, 7}, {2}, {3}, {4, 5}}

I Denote set of partitions of [n] by P[n].

Bayesian nonparametric model for clustering

I Prior distribution over P[n].

I Likelihood model for data.

Peter Orbanz & Yee Whye Teh 13 / 71



EXCHANGEABILITY

Data set 1:

Data set 2:

I Exchangeability:

P(X1 = x1, . . . ,Xn = xn) = P(X1 = xσ(1), . . . ,Xn = xσ(n))

P(π = {{1, 6, 7}, {2}, {3}, {4, 5, 8}})
=P(π = {{4, 6, 3}, {8}, {7}, {1, 5, 2}})

Peter Orbanz & Yee Whye Teh 14 / 71



EXAMPLES

Uniform distribution over P[n]

I Exchangeable.

I Not self-consistent.

{{1 2 3 4}}

{{1 2 3} {4}}

{{1 2 4} {3}}

{{1 3 4} {2}}

{{1} {2 3 4}}

{{1 2} {3 4}}

{{1 3} {2 4}}

{{1 4} {2 3}}

{{1 2} {3} {4}}

{{1 3} {2} {4}}

{{1 4} {2} {3}}

{{1} {2 3} {4}}

{{1} {2 4} {3}}

{{1} {2} {3 4}}

{{1} {2} {3} {4}}

{{1 2 3}}

{{1 2} {3}}

{{1 3} {2}}

{{1} {2 3}}

{{1} {2} {3}}

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

1/15

2/15

4/15

3/15

3/15

3/15
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EXAMPLES

Preferential attachment
I Elements inserted into partition one at a time:

I Inserted into an existing cluster, or
I Into a new cluster.

I Example:

P(8→ {1, 6, 7}) = (1− δ) 3
7

P(8→ {2}) = (1− δ) 1
7

P(8→ {3}) = (1− δ) 1
7

P(8→ {4, 5}) = (1− δ) 2
7

P(8→ new ) = δ

I Typically not exchangeable.

π = {{1, 6, 7}, {2}, {3}, {4, 5}}

8

π = {{1}}
2

new

new
π = {{1}, {2}}
3

new

Peter Orbanz & Yee Whye Teh 16 / 71



CHINESE RESTAURANT PROCESS

1
6

7

2 3 4

5
Kate WilliamDiana Eliza

beth

π = {{1, 6, 7}, {2}, {3}, {4, 5}}

I One customer enters the restaurant at a time:
I The first customer sits at the first table.
I Subsequent customer n + 1:

I Joins table c with probability
|c|

n + α
.

I Starts a new table with probability
α

n + α
.

I Distribution over partitions that is exchangeable and self-consistent.

Peter Orbanz & Yee Whye Teh 17 / 71



THE GENERATIVE PROCESS

π ∼ CRP(α)

For c ∈ π: φ∗c |π ∼ H

For i ∈ c: xi |π,φ∗ ∼ F(φ∗c )

π = {{1, 6, 7}, {2}, {3}, {4, 5}}

Peter Orbanz & Yee Whye Teh 18 / 71



THE GENERATIVE PROCESS

π ∼ CRP(α)

For c ∈ π: φ∗c |π ∼ H
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φWφEφK φD
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THE GENERATIVE PROCESS

π ∼ CRP(α)

For c ∈ π: φ∗c |π ∼ H

For i ∈ c: xi |π,φ∗ ∼ F(φ∗c )

π = {{1, 6, 7}, {2}, {3}, {4, 5}}
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INFERENCE

Gibbs sampling

I Update cluster parameters:

For c ∈ π: p(φ∗c ) = h(φ∗c )
∏
i∈c

f (xi|φ∗c )

I Update partition:

For i ∈ [n]: p(i ∈ c−i) ∝
|c−i|

n− 1 + α
f (xi|φ∗c )

p(i in new cluster ) ∝ α

n− 1 + α
f (xi|φ∗new)

I Other samplers: split-merge [?], conditional sampling
[?, ?, ?], variational inference [?, ?].

zi

α

H

xi

i = 1 . . . n

π

φ∗
c

c ∈ π

[Nea00]Peter Orbanz & Yee Whye Teh 19 / 71



INFINITE MIXTURE MODELS

Finite mixture model
I For each observation i = 1, . . . , n:

Data: xi|zi = k ∼ F(θk)

Cluster indicator: zi ∼ w

I Parameters:

Mixing proportions: w ∼ Dirichlet
(α

K
, . . . ,

α

K

)
Cluster parameters: φ∗k ∼ H

Infinite limit
I Derive the induced distribution over partitions.

P(πK = π) =
Γ(K + 1)Γ(α)

Γ(K − |π|+ 1)

∏
c∈π

Γ(|c|+ α/K)

Γ(α/K)

I Take K →∞.

zi

α

H

xi

w

k = 1 . . . K

i = 1 . . . n

φ∗
k

[Nea92, Ras00, IZ02]Peter Orbanz & Yee Whye Teh 20 / 71



APPLICATIONS
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APPLICATIONS

Applications Object of interest Bayesian nonparametric model
Classification & regression Function Gaussian process
Clustering Partition Chinese restaurant process
Density estimation Density Dirichlet process mixture
Hierarchical clustering Hierarchical partition Dirichlet/Pitman-Yor diffusion tree,

Kingman’s coalescent, Nested CRP
Latent variable modelling Features Beta process/Indian buffet process
Survival analysis Hazard Beta process, Neutral-to-the-right process
Power-law behaviour Pitman-Yor process, Stable-beta process
Dictionary learning Dictionary Beta process/Indian buffet process
Dimensionality reduction Manifold Gaussian process latent variable model
Deep learning Features Cascading/nested Indian buffet process
Topic models Atomic distribution Hierarchical Dirichlet process
Time series Infinite HMM
Sequence prediction Conditional probs Sequence memoizer
Reinforcement learning Conditional probs infinite POMDP
Spatial modelling Functions Gaussian process,

dependent Dirichlet process
Relational modelling Infinite relational model, infinite hidden

relational model, Mondrian process
...

...
...Peter Orbanz & Yee Whye Teh 22 / 71



LEARNING TOPIC HIERARCHIES

Blei et al [BGJ10]Peter Orbanz & Yee Whye Teh 23 / 71



MOTION CAPTURE SEGMENTATION

Fox et al [FSJW10]Peter Orbanz & Yee Whye Teh 24 / 71



WORD SEGMENTATION

山花貞夫・新民連会長は十六日の記者会見で、村山富
市首相ら 社会党 執行部とさきがけが連携強化をめざし
た問題について「私たちの行動が新しい政界の動きを
作ったといえる。統一会派を超えて将来の日本の...

今后一段时期,不但居民会更多地选择国债,而且一些金融
机构在准备金利率调低后,出于安全性方面的考虑,也会将
部分资金用来购买 国债 。

yuwanttusiD6bUk?

Goldwater et al [GGJ06a], Mochihashi et al [MYU09]Peter Orbanz & Yee Whye Teh 25 / 71



WORD SEGMENTATION

you want to see the book

yuwanttusiD6bUk

y u w a n t t u s i D 6 b U k

P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 68.9 80.6 84.8 82.6 52.9 51.3 52.0
MBDP-1 67.0 69.4 68.2 80.3 84.3 82.3 53.6 51.3 52.4
DP 61.9 47.6 53.8 92.4 62.2 74.3 57.0 57.5 57.2
NGS-b 68.1 68.6 68.3 81.7 82.5 82.1 54.5 57.0 55.7
HDP 79.4 74.0 76.6 92.4 83.5 87.7 67.9 58.9 63.1

Goldwater et al [GGJ06a], Mochihashi et al [MYU09]Peter Orbanz & Yee Whye Teh 26 / 71



POWER-LAW BEHAVIOUR
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TWO-PARAMETER CHINESE RESTAURANT PROCESS

1
6

7

2 3 4

5
Kate WilliamDiana Eliza

beth

I One customer enters the restaurant at a time:
I The first customer sits at the first table.
I Subsequent customer n + 1:

I Joins table c with probability
|c| − d
n + α

.

I Starts a new table with probability
α+ |π|d

n + α
.

I Distribution over partitions is still exchangeable, and has power-law properties.

[PPY92, PY97, GGJ06b, Teh06]Peter Orbanz & Yee Whye Teh 28 / 71



LANGUAGE MODELLING AND COMPRESSION

Language Modelling

T N-1 IKN MKN HDLM HPYLM
2× 106 2 148.8 144.1 191.2 144.3
4× 106 2 137.1 132.7 172.7 132.7
6× 106 2 130.6 126.7 162.3 126.4
8× 106 2 125.9 122.3 154.7 121.9

10× 106 2 122.0 118.6 148.7 118.2
12× 106 2 119.0 115.8 144.0 115.4
14× 106 2 116.7 113.6 140.5 113.2
14× 106 1 169.9 169.2 180.6 169.3
14× 106 3 106.1 102.4 136.6 101.9

Compression

Algorithm bits/byte
gzip 2.61
bzip2 2.11
CTW 1.99
PPM 1.93
SM 1.89

[Teh06, GWT10]Peter Orbanz & Yee Whye Teh 29 / 71



UNSUPERVISED PART-OF-SPEECH TAGGING

boy

Noun

kicks

Verb

ball

Noun

Blunsom & Cohn [BC11]Peter Orbanz & Yee Whye Teh 30 / 71



CONSTRUCTING COMPLEX MODELS

Construction of complex Bayesian nonparametric models

I Graphical models.

I Hierarchical Bayesian models [TJ10].

I Dependent stochastic processes [GKM05, Dun10].

Blunsom & Cohn [BC11]Peter Orbanz & Yee Whye Teh 31 / 71



5 MINUTES BREAK

Peter Orbanz & Yee Whye Teh 32 / 71



ASYMPTOTICS

Peter Orbanz & Yee Whye Teh 33 / 71



COVERAGE OF PRIORS

M(X )

Model

P0 = Pθ0

P0 outside model:
misspecified

[Gho10, KvdV06]Peter Orbanz & Yee Whye Teh 34 / 71



COVERAGE OF NONPARAMETRIC PRIORS

Large coverage

I Support of nonparametric priors is larger (∞-dimensional) than of parametric
priors (finite-dimensional).

I However: No uniform prior (or even “neutral” improper prior) exists on M(X ).

Interpretation of nonparametric prior assumptions
Concentration of nonparametric prior on subset of M(X ) typically represents
structural prior assumption.

I GP regression with unknown bandwidth:
I Any continuous function possible
I Prior can express e.g. “very smooth functions are more probable”

I Clustering: Expected number of clusters is...
I ...small −→ CRP prior
I ...power law −→ two-parameter CRP

Peter Orbanz & Yee Whye Teh 35 / 71



POSTERIOR CONSISTENCY

Definition 1 (weak consistency of Bayesian models)
Suppose we sample P0 = Pθ0 from the prior and generate data from P0. If the
posterior converges to δθ0 for n→∞ with probability one under the prior, the model
is called consistent.

Doob’s Theorem
Under very mild conditions, Bayesian models are
consistent in the weak sense.

Problem
I Definition holds up to a set of probability

zero under the prior.

I This set can be huge and is a prior
assumption.

Definition 2 (frequentist consistency of Bayesian models)
A Bayesian model is consistent at P0 if the posterior converges to δP0 with growing
sample size.

[Gho10]Peter Orbanz & Yee Whye Teh 36 / 71



CONVERGENCE RATES

Objective
How quickly does posterior concentrate at θ0 as n→∞?

Measure: Convergence rate
I Find smallest balls Bεn (θ0) for which

Q(Bεn (θ0)|X1, . . . ,Xn)
n→∞−−−→ 1

I Rate = sequence ε1, ε2, . . .

θ0

εn+1

εn

The best we can hope for

I Optimal rate is εn ∝ n−1/2

I Given by optimal convergence of estimators

I Achieved in smooth parametric models

Technical tools

Sieves, covering number, metric entropies. . . −→ familiar from learning theory!

[Gho10, vdV98]Peter Orbanz & Yee Whye Teh 37 / 71



ASYMPTOTICS: SAMPLE RESULTS

Consistency

I DP mixtures: Consistent in many cases. No blanket statements.

I Range of consistency results for GP regression

Convergence rates: Example
Bandwidth adaptation with GPs:

I True parameter θ0 ∈ Cα[0, 1]d, smoothness α unknown

I With gamma prior on GP bandwidth:

Convergence rate is n−α/(2α+d)

Bernstein-von Mises Theorems
I Class of theorems establishing that posterior is asymptotically normal.

I Available for Gaussian processes and various regression settings.
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MOTIVATION

Can we justify our assumptions?
Recall:

data = pattern + noise

In Bayes’ theorem:

Q(dθ|x1, . . . , xn) =

∏n
j=1 p(xj|θ)

p(x1, . . . , xn)
Q(dθ)

Exchangeability
X1,X2, . . . are exchangeable if P(X1,X2, . . . ) is invariant under any permutation σ:

P(X1 = x1,X2 = x2, . . . ) = P(X1 = xσ(1),X2 = xσ(2), . . . )

In words:
Order of observations does not matter.

[Sch95]Peter Orbanz & Yee Whye Teh 40 / 71



EXCHANGEABILITY AND CONDITIONAL INDEPENDENCE

De Finetti’s Theorem

P(X1 = x1,X2 = x2, . . .) =

∫
M(X )

( ∞∏
j=1

θ(Xj = xj)
)

Q(dθ)

m

X1,X2, . . . exchangeable

where:

I M(X ) is the set of probability measures on X
I θ are values of a random probability measure Θ with distribution Q

Implications

I Exchangeable data decomposes into pattern and noise

I More general than i.i.d.-assumption

I Caution: θ is in general an∞-dimensional quantity

[Sch95, Kal05]Peter Orbanz & Yee Whye Teh 41 / 71



EXCHANGEABILITY: RANDOM GRAPHS

Random graph with independent
edges

Given: θ : [0, 1]2 → [0, 1] symmetric
function

I U1,U2, . . . ∼ Uniform[0, 1]

I Edge (i, j) present:

(i, j) ∼ Bernoulli(θ(Ui,Uj))

Call this distribution P(G|θ).

Aldous-Hoover Theorem

Random graph G exchangeable

m

P(G) =

∫
T

P(G|θ)Q(dθ)

0
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1
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GENERAL THEME: SYMMETRY

Other types of exchangeable data

Data Theorem Mixture of... Applications

Points de Finetti I.i.d. point sequences “Standard” models
Sequences Diaconis-Freedman Markov chains Time series
Partition Kingman "Paint-box" partitions Clustering
Graphs Aldous-Hoover Graphs with independent edges Networks
Arrays Aldous-Hoover Arrays with independent entries Collaborative filtering

Ergodic decomposition theorems

µ(X) =

∫
Ω

µ[X|Φ = φ]ν(φ)

I Symmetry (group invariance) on lhs −→ Integral decomposition on rhs

I Permutation invariance on lhs −→ Independence on rhs

[Kal05]Peter Orbanz & Yee Whye Teh 43 / 71
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INDIAN BUFFET PROCESS

Latent feature models
I Grouping problem with overlapping clusters.

I Encode as binary matrix: Observation n in cluster k ⇔ Xnk = 1

I Alternatively: Item n possesses feature k ⇔ Xnk = 1

Indian buffet process (IBP)

1. Customer 1 tries Poisson(α) dishes.

2. Subsequent customer n + 1:

I tries a previously tried dish k with probability
nk

n + 1
,

I tries Poisson
(

α

n + 1

)
new dishes.

Properties

I An exchangeable distribution over finite sets (of dishes).

I Intepretation:
Observation (= customer) n in cluster (= dish) k if customer “tries dish k”

[GG06, GG11]Peter Orbanz & Yee Whye Teh 45 / 71



DE FINETTI REPRESENTATION

Alternative description

1. Sample w1, . . . ,wK ∼iid Beta(1, α/K)

2. Sample X1k, . . . ,Xnk ∼iid Bernoulli(wk)

w1 . . . wKX11 . . . X1K

...
...

XN1 . . . XNK


We need some form of limit object for Beta(1, α/K) for K →∞.

Beta Process (BP)
Distribution on objects of the form

θ =
∞∑

k=1

wkδφk with wk ∈ [0, 1] .

GRIFFITHS AND GHAHRAMANI

lof

Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed
into the left-ordered binary matrix on the right by the function lo f (·). This left-ordered
matrix was generated from the exchangeable Indian buffet process with ! = 10. Empty
columns are omitted from both matrices.

4.2 Equivalence Classes

In order to find the limit of the distribution specified by Equation 10 as K → ", we need to define
equivalence classes of binary matrices—the analogue of partitions for assignment vectors. Identi-
fying these equivalence classes makes it easier to be precise about the objects over which we are
defining probability distributions, but the reader who is satisfied with the intuitive idea of taking the
limit as K → " can safely skip the technical details presented in this section.

Our equivalence classes will be defined with respect to a function on binary matrices, lo f (·).
This function maps binary matrices to left-ordered binary matrices. lo f (Z) is obtained by order-
ing the columns of the binary matrix Z from left to right by the magnitude of the binary number
expressed by that column, taking the first row as the most significant bit. The left-ordering of a
binary matrix is shown in Figure 5. In the first row of the left-ordered matrix, the columns for which
z1k = 1 are grouped at the left. In the second row, the columns for which z2k = 1 are grouped at the
left of the sets for which z1k = 1. This grouping structure persists throughout the matrix.

Considering the process of placing a binary matrix in left-ordered form motivates the defini-
tion of a further technical term. The history of feature k at object i is defined to be (z1k, . . . ,z(i−1)k).
Where no object is specified, we will use history to refer to the full history of feature k, (z1k, . . . ,zNk).
We will individuate the histories of features using the decimal equivalent of the binary numbers cor-
responding to the column entries. For example, at object 3, features can have one of four histories:
0, corresponding to a feature with no previous assignments, 1, being a feature for which z2k = 1
but z1k = 0, 2, being a feature for which z1k = 1 but z2k = 0, and 3, being a feature possessed by
both previous objects were assigned. Kh will denote the number of features possessing the history
h, with K0 being the number of features for which mk = 0 and K+ = #2

N−1
h=1 Kh being the number of

features for which mk > 0, so K = K0+K+. The function lo f thus places the columns of a matrix
in ascending order of their histories.

lo f (·) is a many-to-one function: many binary matrices reduce to the same left-ordered form,
and there is a unique left-ordered form for every binary matrix. We can thus use lo f (·) to define a
set of equivalence classes. Any two binary matricesY and Z are lo f -equivalent if lo f (Y) = lo f (Z),
that is, if Y and Z map to the same left-ordered form. The lo f -equivalence class of a binary matrix
Z, denoted [Z], is the set of binary matrices that are lo f -equivalent to Z. lo f -equivalence classes

1196

I IBP matrix entries are sampled as Xnk ∼iid Bernoulli(wk).

I Beta process is the de Finetti measure of the IBP, that is, Q = BP.

I θ is a random measure (but not normalized)

[GG06, TJ07, Hjo90a]Peter Orbanz & Yee Whye Teh 46 / 71
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EXCHANGEABLE RANDOM PARTITIONS

I Set [n] = {1, 2, . . . , n}.
I Partition: π = {{1, 2, 5}, {3, 4}, {6}, {7, 8, 9}}.

Kingman’s representation

Exchangeable partitions⇔ Random probability measures

θ = Probability measure

For i ∈ [n]: φi | θ ∼ θ
i, j in the same cluster ⇔ φi = φj

P(π = π) =

∫
M(Φ)

P(π = π|θ)Q(dθ)

I Atoms in θ: clusters with more than one element.

I Smooth part of θ: clusters with exactly one
element.

[Kin75, Pit06]Peter Orbanz & Yee Whye Teh 48 / 71



DIRICHLET PROCESS

Chinese Restaurant Process for Clustering
π = {{1, 6, 7}, {2}, {3}, {4, 5}}

φWφEφK φD

I Full generative model:

θ ∼ Q

φi | θ ∼ θ
xi |φi ∼ F(φi)

I Prior Q is a Dirichlet process (DP) with mass parameter
α and base distribution H.

I Two-parameter CRP: Pitman-Yor process (PYP) with
additional discount parameter d.

α

H

xi

i = 1 . . . n

θ

φi

[Fer73, BM73, PPY92, PY97]Peter Orbanz & Yee Whye Teh 49 / 71



DIRICHLET PROCESS

I All clusters can contain more than one
element⇒ θ only contains atoms:

θ =

∞∑
j=1

wjδφ∗j

I What is the prior on {wj, φ
∗
j }?

I Stick-breaking representation:

φ∗j ∼ H

vj ∼ Beta(1, α)
wj = vj

j−1∏
i=1

(1− vj)

Masses decreasing on average: GEM
distribution.

I Strictly decreasing masses: Poisson-Dirichlet
distribution.
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DIRICHLET PROCESS

6

A

A1

A A

A

A

2

3

4

5

I Random probability measure with Dirichlet marginals:

(θ(A1), . . . , θ(Ak)) ∼Dirichlet(αH(A1), . . . , αH(Ak))

for A1, . . . ,Ak partition of the space.
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COMPLETELY RANDOM MEASURES

θ =

∞∑
j=1

wjδφ∗j

Measure
I θ(S) – mass in set S.

I A function θ : Ω→ R+ with certain properties, e.g. if S, S′ disjoint sets,

θ(S ∪ S′) = θ(S) + θ(S′)

Random Measure
I A random function θ : Ω→ R+.

Completely Random Measure (CRM)

I If S, S′ are disjoint sets, then
θ(S)⊥⊥θ(S′)

[Kin67]Peter Orbanz & Yee Whye Teh 53 / 71



COMPLETELY RANDOM MEASURES

Infinitely Divisible Distributions

I Random variable X is infinitely divisible if for every n, there exists n iid random
variables X1, . . . ,Xn such that

∑n
i=1 Xi = X.

I Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Example: Gamma CRM

Γ(α)
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COMPLETELY RANDOM MEASURES

A CRM can always be decomposed into 3
components:

µ = µ0 +

∞∑
i=1

viδψ∗i +

∞∑
j=1

wjδφ∗j

I µ0 is measure that is not random.

I Locations {ψ∗i } are fixed, masses {vi} are
mutually independent and independent of
{wj, φ

∗
j },

I {(wj, φ
∗
j )} is drawn from a Poisson process

over R+ × Φ with rate ρ(w, φ) (the Lévy
measure).
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COMPLETELY RANDOM MEASURES

I Gamma Process
ρ(w, φ) = αw−1e−wh(φ)

I Normalizing a Gamma process⇒ Dirichlet process.
I Beta Process [Hjo90b]

ρ(w, φ) = αw−11(0 ≤ w ≤ 1)h(φ)

I Stable process [Kin75]

ρ(w, φ) =
α

Γ(1− d)
w−d−1h(φ)

I Stable-beta process [KL01, TG09, BJPar]

ρ(w, φ) =
αΓ(1 + β)

Γ(1− d)Γ(β + d)
w−d−1(1− w)β+d−11(0 ≤ w ≤ 1)h(φ)

I Generalized gamma process [?]

ρ(w, φ) =
α

Γ(1− d)
w−d−1e−τwh(φ)

Peter Orbanz & Yee Whye Teh 56 / 71



FAMILIES OF EXCHANGEABLE RANDOM PARTITIONS

Pitman-Yor

Dirichlet Normalized
Stable

Normalized
Generalized

Gamma

Normalized
Random
Measure

Gibbs
Type

Poisson
Kingman

Normalized
Inverse

Gaussian

Mixtures of
Finite Dirichlets

P(π) =

V (n, |π|)
�

c∈π

W (|c|)

T ∼ γ

ν|T ∼ CRM(ρ|ν(Φ) = T )

θ = ν/T

ν ∼ CRM(ρ)

θ = ν/ν(Φ)

[Kin75, Pit03, LMP05, GP06, JLP09, FW11]Peter Orbanz & Yee Whye Teh 57 / 71



HIERARCHICAL PARTITIONS
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BAYESIAN HIERARCHICAL CLUSTERING

I Bayesian approach to hierarchical
clustering:

I Prior over hierarchies T .
I Likelihood model for data.

I Necessarily nonparametric.

I Prior can be described by Markov chain
of partitions.
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FRAGMENTATION PROCESSES

I Start with %L = {[n]}.
I At each stage, fragment each cluster into

smaller clusters.

I A fragmentation can be described by
independent partitionings of clusters at
previous stage.

For each c ∈ %i: Fc ∼ CRP(α, d, c)

%i−1 =
⋃

c∈%i

Fc

I Nested Chinese restaurant process
[BGJ10], tree-structured stick-breaking
[AGJ10].
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COAGULATION PROCESSES

I Start with %1 = [n].

I At each stage, coagulate clusters to form
larger clusters.

I A coagulation can be described by a
partitioning of clusters at previous stage.

C ∼ CRP(α, d, %i)

%i+1 =

{⋃
c′∈c

c′ : c ∈ C

}

I Chinese restaurant franchise [TJBB06].
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RANDOM HIERARCHICAL PARTITIONS

Discrete iterations Continuum limit

Fragmentation

Nested CRP,
tree-structured stick-breaking

Gibbs fragmentation tree
[BGJ10, AGJ10, MPW08]

Dirichlet diffusion tree,
Pitman-Yor diffusion tree

[Nea03, KG11]

Coagulation Chinese restaurant franchise
[TJBB06]

Kingman’s coalescent,
Λ-coalescent

[Kin82, Pit99, TDR08]
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FRAGMENTATION-COAGULATION DUALITY
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HIERARCHICAL PITMAN-YOR PROCESS

I Fragmentation-coagulation duality implies:

G1|G0 ∼ PYP(α, d2,G0)

G2|G1 ∼ PYP(αd1, d1,G1)
⇒ G2|G0 ∼ PYP(αd1, d1d2,G0)

I Computational implication: sequence memoizer [WAG+09].

I Dirichlet Process case:

G1|G0 ∼ DP(α/d,G0)

G2|G1 ∼ PYP(α, d1,G1)
⇒ G2|G0 ∼ DP(α,G0)

I Modelling implication: hierarchical Dirichlet process (HDP)
[TJBB06].
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SUMMARY

Why Bayesian Nonparametrics?
I World is complicated.

I Objects of interest often infinite dimensional.

I Alternative to model selection.

I Flexible modelling language with interesting properties.

I Works well with finite data while enjoying asymptotic guarantees.

Technical Tools
I Stochastic processes.

I Exchangeability.

I Graphical, hierarchical and dependent models.

Open Challenges
I Novel models and useful applications.

I Better inference and flexible software packages.

I Learning theory for Bayesian nonparametric models.
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