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Definition

The Dirichlet process is a stochastic proces used in Bayesian nonparametric
models of data, particularly in Dirichlet process mixture models (also known as
infinite mixture models). It is a distribution over distributions, i.e. each draw
from a Dirichlet process is itself a distribution. It is called a Dirichlet process be-
cause it has Dirichlet distributed finite dimensional marginal distributions, just
as the Gaussian process, another popular stochastic process used for Bayesian
nonparametric regression, has Gaussian distributed finite dimensional marginal
distributions. Distributions drawn from a Dirichlet process are discrete, but
cannot be described using a finite number of parameters, thus the classification
as a nonparametric model.

Motivation and Background

Probabilistic models are used throughout machine learning to model distribu-
tions over observed data. Traditional parametric models using a fixed and finite
number of parameters can suffer from over- or under-fitting of data when there
is a misfit between the complexity of the model (often expressed in terms of the
number of parameters) and the amount of data available. As a result, model se-
lection, or the choice of a model with the right complexity, is often an important
issue in parametric modeling. Unfortunately, model selection is an operation
that is fraught with difficulties, whether we use cross validation or marginal
probabilities as the basis for selection. The Bayesian nonparametric approach is
an alternative to parametric modeling and selection. By using a model with an
unbounded complexity, underfitting is mitigated, while the Bayesian approach
of computing or approximating the full posterior over parameters mitigates over-
fitting. A general overview of Bayesian nonparametric modeling can be found
under its entry in the encyclopedia [?].

Nonparametric models are also motivated philosophically by Bayesian mod-
eling. Typically we assume that we have an underlying and unknown distribu-
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tion which we wish to infer given some observed data. Say we observe x1, . . . , xn,
with xi ∼ F independent and identical draws from the unknown distribution
F . A Bayesian would approach this problem by placing a prior over F then
computing the posterior over F given data. Traditionally, this prior over dis-
tributions is given by a parametric family. But constraining distributions to
lie within parametric families limits the scope and type of inferences that can
be made. The nonparametric approach instead uses a prior over distributions
with wide support, typically the support being the space of all distributions.
Given such a large space over which we make our inferences, it is important
that posterior computations are tractable.

The Dirichlet process is currently one of the most popular Bayesian non-
parametric models. It was first formalized in [1]1 for general Bayesian statistical
modeling, as a prior over distributions with wide support yet tractable posteri-
ors. Unfortunately the Dirichlet process is limited by the fact that draws from
it are discrete distributions, and generalizations to more general priors did not
have tractable posterior inference until the development of MCMC techniques
[3, 4]. Since then there has been significant developments in terms of infer-
ence algorithms, extensions, theory and applications. In the machine learning
community work on Dirichlet processes date back to [5, 6].

Theory

The Dirichlet process (DP) is a stochastic process whose sample paths are proba-
bility measures with probability one. Stochastic processes are distributions over
function spaces, with sample paths being random functions drawn from the dis-
tribution. In the case of the DP, it is a distribution over probability measures,
which are functions with certain special properties which allow them to be inter-
preted as distributions over some probability space Θ. Thus draws from a DP
can be interpreted as random distributions. For a distribution over probability
measures to be a DP, its marginal distributions have to take on a specific form
which we shall give below. We assume that the user is familiar with a modicum
of measure theory and Dirichlet distributions.

Before we proceed to the formal definition, we will first give an intuitive
explanation of the DP as an infinite dimensional generalization of Dirichlet
distributions. Consider a Bayesian mixture model consisting of K components:

π|α ∼ Dir( αK , . . . ,
α
K ) θ∗k|H ∼ H

zi|π ∼ Mult(π) xi|zi, {θ∗k} ∼ F (θ∗zi) (1)

where π is the mixing proportion, α is the pseudocount hyperparameter of
the Dirichlet prior, H is the prior distribution over component parameters θ∗k,
and F (θ) is the component distribution parametrized by θ. It can be shown
that for large K, because of the particular way we parametrized the Dirichlet
prior over π, the number of components typically used to model n data items

1Note however that related models in population genetics date back to [2].
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becomes independent of K and is approximately O(α log n). This implies that
the mixture model stays well-defined as K → ∞, leading to what is known as
an infinite mixture model [5, 6]. This model was first proposed as a way to
sidestep the difficult problem of determining the number of components in a
mixture, and as a nonparametric alternative to finite mixtures whose size can
grow naturally with the number of data items. The more modern definition of
this model uses a DP and with the resulting model called a DP mixture model.
The DP itself appears as the K → ∞ limit of the random discrete probability
measure

∑K
k=1 πkδθ∗k , where δθ is a point mass centred at θ. We will return to

the DP mixture towards the end of this entry.

Dirichlet Process

For a random distribution G to be distributed according to a DP, its marginal
distributions have to be Dirichlet distributed [1]. Specifically, let H be a distri-
bution over Θ and α be a positive real number. Then for any finite measurable
partition A1, . . . , Ar of Θ the vector (G(A1), . . . , G(Ar)) is random since G is
random. We say G is Dirichlet process distributed with base distribution H and
concentration parameter α, written G ∼ DP(α,H), if

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)) (2)

for every finite measurable partition A1, . . . , Ar of Θ.
The parameters H and α play intuitive roles in the definition of the DP. The

base distribution is basically the mean of the DP: for any measurable set A ⊂ Θ,
we have E[G(A)] = H(A). On the other hand, the concentration parameter can
be understood as an inverse variance: V [G(A)] = H(A)(1 − H(A))/(α + 1).
The larger α is, the smaller the variance, and the DP will concentrate more
of its mass around the mean. The concentration parameter is also called the
strength parameter, referring to the strength of the prior when using the DP
as a nonparametric prior over distributions in a Bayesian nonparametric model,
and the mass parameter, as this prior strength can be measured in units of
sample size (or mass) of observations. Also, notice that α and H only appear as

their product in the definition (2) of the DP. Some authors thus treat H̃ = αH,

as the single (positive measure) parameter of the DP, writing DP(H̃) instead of
DP(α,H). This parametrization can be notationally convenient, but loses the
distinct roles α and H play in describing the DP.

Since α describes the concentration of mass around the mean of the DP, as
α → ∞, we will have G(A) → H(A) for any measurable A, that is G → H
weakly or pointwise. However this not equivalent to saying that G→ H. As we
shall see later, draws from a DP will be discrete distributions with probability
one, even if H is smooth. Thus G and H need not even be absolutely continuous
with respect to each other. This has not stopped some authors from using the
DP as a nonparametric relaxation of a parametric model given by H. However,
if smoothness is a concern, it is possible to extend the DP by convolving G with
kernels so that the resulting random distribution has a density.
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A related issue to the above is the coverage of the DP within the class
of all distributions over Θ. We already noted that samples from the DP are
discrete, thus the set of distributions with positive probability under the DP is
small. However it turns out that this set is also large in a different sense: if the
topological support of H (the smallest closed set S in Θ with H(S) = 1) is all
of Θ, then any distribution over Θ can be approximated arbitrarily accurately
in the weak or pointwise sense by a sequence of draws from DP(α,H). This
property has consequence in the consistency of DPs discussed later.

For all but the simplest probability spaces, the number of measurable par-
titions in the definition (2) of the DP can be uncountably large. The natural
question to ask here is whether objects satisfying such a large number of condi-
tions as (2) can exist. There are a number of approaches to establish existence.
[1] noted that the conditions (2) are consistent with each other, and made use
of Kolmogorov’s consistency theorem to show that a distribution over functions
from the measurable subsets of Θ to [0, 1] exists satisfying (2) for all finite
measurable partitions of Θ. However it turns out that this construction does
not necessarily guarantee a distribution over probability measures. [1] also pro-
vided a construction of the DP by normalizing a gamma process. In a later
section we will see that the predictive distributions of the DP are related to the
Blackwell-MacQueen urn scheme. [7] made use of this, along with de Finetti’s
theorem on exchangeable sequences, to prove existence of the DP. All the above
methods made use of powerful and general mathematical machinery to establish
existence, and often require regularity assumptions on H and Θ to apply these
machinery. In a later section, we describe a stick-breaking construction of the
DP due to [8], which is a direct and elegant construction of the DP which need
not impose such regularity assumptions.

Posterior Distribution

Let G ∼ DP(α,H). Since G is a (random) distribution, we can in turn draw
samples from G itself. Let θ1, . . . , θn be a sequence of independent draws from
G. Note that the θi’s take values in Θ since G is a distribution over Θ. We are
interested in the posterior distribution of G given observed values of θ1, . . . , θn.
Let A1, . . . , Ar be a finite measurable partition of Θ, and let nk = #{i : θi ∈ Ak}
be the number of observed values in Ak. By (2) and the conjugacy between the
Dirichlet and the multinomial distributions, we have:

(G(A1), . . . , G(Ar))|θ1, . . . , θn ∼ Dir(αH(A1) + n1, . . . , αH(Ar) + nr) (3)

Since the above is true for all finite measurable partitions, the posterior distribu-
tion over G must be a DP as well. A little algebra shows that the posterior DP

has updated concentration parameter α+ n and base distribution
αH+

∑n
i=1 δθi

α+n ,

where δi is a point mass located at θi and nk =
∑n
i=1 δi(Ak). In other words,

the DP provides a conjugate family of priors over distributions that is closed
under posterior updates given observations. Rewriting the posterior DP, we
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have:

G|θ1, . . . , θn ∼ DP
(
α+ n, α

α+nH + n
α+n

∑n
i=1 δθi
n

)
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
∑n
i=1 δθi
n . The weight

associated with the prior base distribution is proportional to α, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret α as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of θn+1 given θ1, . . . , θn. Taking α → 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � α, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ∼ DP(α,H), and drawing an i.i.d. sequence θ1, θ2, . . . ∼
G. Consider the predictive distribution for θn+1, conditioned on θ1, . . . , θn and
with G marginalized out. Since θn+1|G, θ1, . . . , θn ∼ G, for a measurable A ⊂ Θ,
we have

P (θn+1 ∈ A|θ1, . . . , θn) = E[G(A)|θ1, . . . , θn]

=
1

α+ n

(
αH(A) +

n∑
i=1

δθi(A)

)
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

θn+1|θ1, . . . , θn ∼
1

α+ n

(
αH +

n∑
i=1

δθi

)
(6)

Therefore the posterior base distribution given θ1, . . . , θn is also the predictive
distribution of θn+1.

The sequence of predictive distributions (6) for θ1, θ2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in Θ is a unique color, and draws θ ∼ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw θ1 ∼ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability α

α+n , pick a new color (draw θn+1 ∼ H), paint a
ball with that color and drop the ball into the urn, or, with probability n

α+n ,
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reach into the urn to pick a random ball out (draw θn+1 from the empirical
distribution), paint a new ball with the same color and drop both balls back
into the urn.

The Blackwell-MacQueen urn scheme has been used to show the existence
of the DP [7]. Starting from (6), which are perfectly well-defined conditional
distributions regardless of the question of the existence of DPs, we can con-
struct a distribution over sequences θ1, θ2, . . . by iteratively drawing each θi
given θ1, . . . , θi−1. For n ≥ 1 let

P (θ1, . . . , θn) =

n∏
i=1

P (θi|θ1, . . . , θi−1) (7)

be the joint distribution over the first n observations, where the conditional
distributions are given by (6). It is straightforward to verify that this random
sequence is infinitely exchangeable. That is, for every n, the probability of
generating θ1, . . . , θn using (6), in that order, is equal to the probability of
drawing them in any alternative order. More precisely, given any permutation
σ on 1, . . . , n, we have

P (θ1, . . . , θn) = P (θσ(1), . . . , θσ(n)) (8)

Now de Finetti’s theorem states that for any infinitely exchangeable sequence
θ1, θ2, . . . there is a random distribution G such that the sequence is composed
of i.i.d. draws from it:

P (θ1, . . . , θn) =

∫ n∏
i=1

G(θi) dP (G) (9)

In our setting, the prior over the random distribution P (G) is precisely the
Dirichlet process DP(α,H), thus establishing existence.

A salient property of the predictive distribution (6) is that it has point masses
located at the previous draws θ1, . . . , θn. A first observation is that with positive
probability draws from G will take on the same value, regardless of smoothness
of H. This implies that the distribution G itself has point masses. A further
observation is that for a long enough sequence of draws from G, the value of
any draw will be repeated by another draw, implying that G is composed only
of a weighted sum of point masses, i.e. it is a discrete distribution. We will see
two sections below that this is indeed the case, and give a simple construction
for G called the stick-breaking construction. Before that, we shall investigate
the clustering property of the DP.

Clustering, Partitions and the Chinese Restaurant Process

In addition to the discreteness property of draws from a DP, (6) also implies a
clustering property. The discreteness and clustering properties of the DP play
crucial roles in the use of DPs for clustering via DP mixture models, described
in the application section. For now we assume that H is smooth, so that all
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repeated values are due to the discreteness property of the DP and not due to
H itself2. Since the values of draws are repeated, let θ∗1 , . . . , θ

∗
m be the unique

values among θ1, . . . , θn, and nk be the number of repeats of θ∗k. The predictive
distribution can be equivalently written as:

θn+1|θ1, . . . , θn ∼
1

α+ n

(
αH +

m∑
k=1

nkδθ∗k

)
(10)

Notice that value θ∗k will be repeated by θn+1 with probability proportional to
nk, the number of times it has already been observed. The larger nk is, the
higher the probability that it will grow. This is a rich-gets-richer phenomenon,
where large clusters (a set of θi’s with identical values θ∗k being considered a
cluster) grow larger faster.

We can delve further into the clustering property of the DP by looking at
partitions induced by the clustering. The unique values of θ1, . . . , θn induce
a partitioning of the set [n] = {1, . . . , n} into clusters such that within each
cluster, say cluster k, the θi’s take on the same value θ∗k. Given that θ1, . . . , θn
are random, this induces a random partition of [n]. This random partition
in fact encapsulates all the properties of the DP, and is a very well studied
mathematical object in its own right, predating even the DP itself [2, 9, 10].
To see how it encapsulates the DP, we simply invert the generative process.
Starting from the distribution over random partitions, we can reconstruct the
joint distribution (7) over θ1, . . . , θn, by first drawing a random partition on [n],
then for each cluster k in the partition draw a θ∗k ∼ H, and finally assign θi = θ∗k
for each i in cluster k. From the joint distribution (7) we can obtain the DP by
appealing to de Finetti’s theorem.

The distribution over partitions is called the Chinese restaurant process
(CRP) due to a different metaphor3. In this metaphor we have a Chinese
restaurant with an infinite number of tables, each of which can seat an infinite
number of customers. The first customer enters the restaurant and sits at the
first table. The second customer enters and decides either to sit with the first
customer, or by herself at a new table. In general, the n+ 1st customer either
joins an already occupied table k with probability proportional to the number
nk of customers already sitting there, or sits at a new table with probability
proportional to α. Identifying customers with integers 1, 2, . . . and tables as
clusters, after n customers have sat down the tables define a partition of [n]
with the distribution over partitions being the same as the one above. The
fact that most Chinese restaurants have round tables is an important aspect of
the CRP. This is because it does not just define a distribution over partitions
of [n], it also defines a distribution over permutations of [n], with each table
corresponding to a cycle of the permutation. We do not need to explore this
aspect further and refer the interested reader to [9, 10].

This distribution over partitions first appeared in population genetics, where
it was found to be a robust distribution over alleles (clusters) among gametes

2Similar conclusions can be drawn when H has atoms, there is just more bookkeeping.
3The name was coined by Lester Dubins and Jim Pitman in the early 1980’s [9].
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(observations) under simplifying assumptions on the population, and is known
under the name of Ewens sampling formula [2]. Before moving on we shall
consider just one illuminating aspect, specifically the distribution of the number
of clusters among n observations. Notice that for i ≥ 1, the observation θi
takes on a new value (thus incrementing m by one) with probability α

α+i−1
independently of the number of clusters among previous θ’s. Thus the number
of cluster m has mean and variance:

E[m|n] =

n∑
i=1

α

α+ i− 1
= α(ψ(α+ n)− ψ(α))

' α log
(

1 +
n

α

)
for N,α� 0, (11)

V [m|n] = α(ψ(α+ n)− ψ(α)) + α2(ψ′(α+ n)− ψ′(α))

' α log
(

1 +
n

α

)
for n > α� 0, (12)

where ψ(·) is the digamma function. Note that the number of clusters grows only
logarithmically in the number of observations. This slow growth of the number
of clusters makes sense because of the rich-gets-richer phenomenon: we expect
there to be large clusters thus the number of clusters m has to be smaller than
the number of observations n. Notice that α controls the number of clusters
in a direct manner, with larger α implying a larger number of clusters a priori.
This intuition will help in the application of DPs to mixture models.

Stick-breaking Construction

We have already intuited that draws from a DP are composed of a weighted sum
of point masses. [8] made this precise by providing a constructive definition of
the DP as such, called the stick-breaking construction. This construction is
also significantly more straightforward and general than previous proofs of the
existence of DPs. It is simply given as follows:

βk ∼ Beta(1, α) θ∗k ∼ H

πk = βk

k−1∏
l=1

(1− βl) G =

∞∑
k=1

πkδθ∗k (13)

Then G ∼ DP(α,H). The construction of π can be understood metaphorically
as follows. Starting with a stick of length 1, we break it at β1, assigning π1
to be the length of stick we just broke off. Now recursively break the other
portion to obtain π2, π3 and so forth. The stick-breaking distribution over π is
sometimes written π ∼ GEM(α), where the letters stand for Griffiths, Engen
and McCloskey [10]. Because of its simplicity, the stick-breaking construction
has lead to a variety of extensions as well as novel inference techniques for the
Dirichlet process [11].
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Applications

Because of its simplicity, DPs are used across a wide variety of applications
of Bayesian analysis in both statistics and machine learning. The simplest
and most prevalent applications include: Bayesian model validation, density
estimation and clustering via mixture models. We shall briefly describe the first
two classes before detailing DP mixture models.

How does one validate that a model gives a good fit to some observed data?
The Bayesian approach would usually involve computing the marginal prob-
ability of the observed data under the model, and comparing this marginal
probability to that for other models. If the marginal probability of the model
of interest is highest we may conclude that we have a good fit. The choice of
models to compare against is an issue in this approach, since it is desirable to
compare against as large a class of models as possible. The Bayesian nonpara-
metric approach gives an answer to this question: use the space of all possible
distributions as our comparison class, with a prior over distributions. The DP
is a popular choice for this prior, due to its simplicity, wide coverage of the class
of all distributions, and recent advances in computationally efficient inference in
DP models. The approach is usually to use the given parametric model as the
base distribution of the DP, with the DP serving as a nonparametric relaxation
around this parametric model. If the parametric model performs as well or bet-
ter than the DP relaxed model, we have convincing evidence of the validity of
the model.

Another application of DPs is in density estimation [12, 5, 3, 6]. Here we
are interested in modeling the density from which a given set of observations
is drawn. To avoid limiting ourselves to any parametric class, we may again
use a nonparametric prior over all densities. Here again DPs are a popular.
However note that distributions drawn from a DP are discrete, thus do not
have densities. The solution is to smooth out draws from the DP with a kernel.
Let G ∼ DP(α,H) and let f(x|θ) be a family of densities (kernels) indexed by
θ. We use the following as our nonparametric density of x:

p(x) =

∫
f(x|θ)G(θ) dθ (14)

Similarly, smoothing out DPs in this way is also useful in the nonparametric
relaxation setting above. As we see below, this way of smoothing out DPs
is equivalent to DP mixture models, if the data distributions F (θ) below are
smooth with densities given by f(x|θ).

Dirichlet Process Mixture Models

The most common application of the Dirichlet process is in clustering data
using mixture models [12, 5, 3, 6]. Here the nonparametric nature of the Dirich-
let process translates to mixture models with a countably infinite number of
components. We model a set of observations {x1, . . . , xn} using a set of latent
parameters {θ1, . . . , θn}. Each θi is drawn independently and identically from

9



G, while each xi has distribution F (θi) parametrized by θi:

xi|θi ∼ F (θi)

θi|G ∼ G
G|α,H ∼ DP(α,H) (15)

Because G is discrete, multiple θi’s can take on the same value simultaneously,
and the above model can be seen as a mixture model, where xi’s with the same
value of θi belong to the same cluster. The mixture perspective can be made
more in agreement with the usual representation of mixture models using the
stick-breaking construction (13). Let zi be a cluster assignment variable, which
takes on value k with probability πk. Then (15) can be equivalently expressed
as

π|α ∼ GEM(α) θ∗k|H ∼ H
zi|π ∼ Mult(π) xi|zi, {θ∗k} ∼ F (θ∗zi) (16)

with G =
∑∞
k=1 πkδθ∗k and θi = θ∗zi . In mixture modeling terminology, π is the

mixing proportion, θ∗k are the cluster parameters, F (θ∗k) is the distribution over
data in cluster k, and H the prior over cluster parameters.

The DP mixture model is an infinite mixture model—a mixture model with
a countably infinite number of clusters. However, because the πk’s decrease
exponentially quickly, only a small number of clusters will be used to model the
data a priori (in fact, as we saw previously, the expected number of components
used a priori is logarithmic in the number of observations). This is different
than a finite mixture model, which uses a fixed number of clusters to model the
data. In the DP mixture model, the actual number of clusters used to model
data is not fixed, and can be automatically inferred from data using the usual
Bayesian posterior inference framework (see [4] for a survey of MCMC inference
procedures for DP mixture models). The equivalent operation for finite mixture
models would be model averaging or model selection for the appropriate number
of components, an approach which is fraught with difficulties. Thus infinite
mixture models as exemplified by DP mixture models provide a compelling
alternative to the traditional finite mixture model paradigm.

Generalizations and Extensions

The DP is the canonical distribution over probability measures and a wide range
of generalizations have been proposed in the literature. First and foremost is
the Pitman-Yor process [13, 11], which has recently seen successful applications
modeling data exhibiting power-law properties [14, 15]. The Pitman-Yor pro-
cess includes a third parameter d ∈ [0, 1), with d = 0 reducing to the DP.
The various representations of the DP, including the Chinese restaurant pro-
cess and the stick-breaking construction, have analogues for the Pitman-Yor
process. Other generalizations of the DP are obtained by generalizing one of
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its representations. These include Pólya trees, normalized random measure,
Poisson-Kingman models, species sampling models and stick-breaking priors.

The DP has also been used in more complex models involving more than
one random probability measure. For example, in nonparametric regression we
might have one probability measure for each value of a covariate, and in multi-
task settings each task might be associated with a probability measure with
dependence across tasks implemented using a hierarchical Bayesian model. In
the first situation the class of models is typically called dependent Dirichlet pro-
cesses [16], while in the second the appropriate model is a hierarchical Dirichlet
process [17].

Future Directions

The Dirichlet process, and Bayesian nonparametrics in general, is an active area
of research within both machine learning and statistics. Current research trends
span a number of directions. Firstly there is the issue of efficient inference in
DP models. [4] is an excellent survey of the state-of-the-art in 2000, with all
algorithms based on Gibbs sampling or small-step Metropolis-Hastings MCMC
sampling. Since then there has been much work, including split-and-merge and
large-step auxiliary variable MCMC sampling, sequential Monte Carlo, expec-
tation propagation, and variational methods. Secondly there has been interest
in extending the DP, both in terms of new random distributions, as well as
novel classes of nonparametric objects inspired by the DP. Thirdly, theoretical
issues of convergence and consistency are being explored to provide frequentist
guarantees for Bayesian nonparametric models. Finally there are applications
of such models, to clustering, transfer learning, relational learning, models of
cognition, sequence learning, and regression and classification among others.
We believe DPs and Bayesian nonparametrics will prove to be rich and fertile
grounds for research for years to come.

Cross References

Bayesian Methods, Prior Probabilities, Bayesian Nonparametrics.

Recommended Reading

In addition to the references embedded in the text above, we recommend the
book [18] on Bayesian nonparametrics.
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