UCL logo
skip to navigation. skip to content.

Gatsby Computational Neuroscience Unit




UCL Home
  • UCL Home
  • UCL Gatsby Computational Neuroscience Unit
UCL Gatsby Unit
  • introduction
  • people
  • research
  • publications
  • courses
  • phd programme
  • events
  • directions
  • greater gatsby
  • vacancies
  • Internal
  • ucl

 

 

  • Home
  • Staff & Students
  • Vacancies

 

Bert Kappen

 

 

http://www.snn.ru.nl/~bertk/

 

Tuesday 27th November 2012

Time: 2pm

 

B10 Basement Seminar Room

Alexandra House, 17 Queen Square, London, WC1N 3AR

 

 

The Variational Garrote

 

In this talk, I present a new variational method for sparse regression using L0 regularization. The variational parameters appear in the approximate model in a way that is similar to Breiman's Garrote model. We refer to this method as the variational Garrote (VG). We show that the combination of the variational approximation and L0 regularization  has the effect of making the problem effectively of maximal rank even when the number of samples is small compared to the number of variables. The VG is compared numerically with the Lasso method, ridge regression and the recently introduced paired mean field method (PMF). Numerical results on synthetic data show that the VG and PMF yield more accurate predictions and more accurately reconstruct the true model than the other methods. It is shown that the VG finds correct solutions when the Lasso solution is inconsistent due to large input correlations. For complex problems with correlated inputs the VG yields better results than the PMF. The naive implementation of the VG scales cubic with the number of features. By introducing Lagrange multipliers we obtain a dual formulation of the problem that scales cubic in the number of samples, but close to linear in the number of features.

 

 

 

 

.

 

 

 

 

 

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Privacy
  • Advanced Search
  • Contact Us
Gatsby Computational Neuroscience Unit - Alexandra House - 17 Queen Square - London - WC1N 3AR - Telephone: +44 (0)20 7679 1176

© UCL 1999–20112011