[Natural Statistics] [Perception] [Other Neural Theory] [Neural Dynamics] [Neural Encoding] [Neural Decoding] [Machine Learning] [Signal Processing]
[1] M. Pachitariu and M. Sahani.
Learning visual motion in recurrent neural networks.
In P. Bartlett, F. C. N. Pereira, L. Bottou, C. J. C. Burges, and K. Q. Weinberger, eds., Advances in
Neural Information Processing Systems, vol. 25, 2012.
[2] P. Berkes, R. E. Turner, and M. Sahani.
A structured model of video reproduces primary visual cortical organisation.
PLoS Computational Biology, 5(9):e1000495, 2009.
pdf doi.
[3] P. Berkes, R. E. Turner, and M. Sahani.
On sparsity and overcompleteness in image models.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., Advances in Neural Information Processing
Systems, vol. 20. Curran Associates, Inc., Red Hook, New York, 2008.
pdf.
[4] J. Lücke and M. Sahani.
Maximal causes for non-linear component extraction.
Journal of Machine Learning Research, 9:1227–1267, 2008.
journal pdf.
[5] R. E. Turner and M. Sahani.
Modeling natural sounds with modulation cascade processes.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., Advances in Neural Information Processing
Systems, vol. 20. Curran Associates, Inc., Red Hook, New York, 2008.
pdf.
[6] J. Lücke and M. Sahani.
Generalized softmax networks for non-linear component extraction.
In J. Marques de Sá, L. A. Alexandre, W. Duch, and D. Mandic., eds., Artificial Neural Networks –
ICANN 2007 Proceedings, Part I, Lecture Notes in Computer Science, pp. 657–667. Springer, Berlin,
2007.
doi pdf.
[7] R. E. Turner and M. Sahani.
A maximum-likelihood interpretation for slow feature analysis.
Neural Computation, 19(4):1022–1038, 2007.
doi.
[8] R. E. Turner and M. Sahani.
Probabilistic amplitude demodulation.
In Independent Component Analysis and Signal Separation, Lecture Notes in Computer Science, pp.
544–551. Springer, 2007.
Best student paper award.
doi pdf.
[1] M. I. Garrido, M. Sahani∗, and R. J. Dolan∗.
Outlier responses reflect sensitivity to statistical structure in the human brain.
PLoS Computational Biology, 9(3):e1002999, 2013.
∗ equal contributions.
pdf doi.
[2] L. Whiteley and M. Sahani.
Attention in a Bayesian framework.
Frontiers in Human Neuroscience, 6:100, 2012.
pdf doi.
[3] M. I. Garrido, G. R. Barnes, M. Sahani, and R. J. Dolan.
Functional evidence for a dual route to amygdala.
Current Biology, 22(2):129–134, 2012.
doi.
[4] M. I. Garrido, R. J. Dolan, and M. Sahani.
Surprise leads to noisier perceptual decisions.
i-Perception, 2(2):112–120, 2011.
doi pdf.
[5] M. B. Ahrens and M. Sahani.
Observers exploit stochastic models of sensory change to help judge the passage of time.
Current Biology, 21(3):200–206, 2011.
pdf doi.
[6] M. Sahani and L. Whiteley.
Modeling cue integration in cluttered environments.
In M. Landy, K. Körding, and J. Trommershäuser, eds., Sensory Cue Integration. Oxford University
Press, 2011.
pdf.
[7] S. Fleming, L. Whiteley, O. J. Hulme, M. Sahani, and R. J. Dolan.
Effects of category-specific costs on neural systems for perceptual decision-making.
Journal of Neurophysiology, 103:3238–3247, 2010.
pdf doi.
[8] M. B. Ahrens and M. Sahani.
Inferring elapsed time from stochastic neural processes.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., Advances in Neural Information Processing
Systems, vol. 20. Curran Associates, Inc., Red Hook, New York, 2008.
Best student paper, honourable mention.
pdf.
[9] L. Whiteley and M. Sahani.
Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes.
Journal of Vision, 8(3):2, 1–15, 2008.
doi pdf.
[1] M. Sahani.
A biologically plausible algorithm for reinforcement-shaped representational learning.
In S. Thrun, L. Saul, and B. Schoelkopf, eds., Advances in Neural Information Processing Systems,
vol. 16. MIT Press, Cambridge, Massachusetts, 2004.
pdf.
[2] M. Sahani and P. Dayan.
Doubly distributional population codes: Simultaneous representation of uncertainty and
multiplicity.
Neural Computation, 15(10):2255–2279, 2003.
pdf ps.gz doi.
[3] P. Dayan, M. Sahani, and G. Deback.
Adaptation and unsupervised learning.
In S. Becker, S. Thrun, and K. Obermayer, eds., Advances in Neural Information Processing Systems,
vol. 15, pp. 221–228. MIT Press, Cambridge, Massachusetts, 2003.
[4] M. Sahani and P. Dayan.
Multiplicative modulation of bump attractors.
Technical Report GCNU TR 2000-05, Gatsby Computational Neuroscience Unit, University College,
London, 2000.
pdf ps.gz.
[1] L. Buesing, J. H. Macke, and M. Sahani.
Spectral learning of linear dynamics from generalised-linear observations with application
to neural population data.
In P. Bartlett, F. C. N. Pereira, L. Bottou, C. J. C. Burges, and K. Q. Weinberger, eds., Advances
in Neural Information Processing Systems, vol. 25, 2012.
[2] L. Buesing, J. H. Macke, and M. Sahani.
Learning stable, regularised latent models of neural population dynamics.
Network: Computation in Neural Systems, 23(1–2):24–47, 2012.
pdf doi.
[3] J. H. Macke, L. Büsing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani.
Empirical models of spiking in neural populations.
In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, eds., Advances
in Neural Information Processing Systems, vol. 24, pp. 1350–1358. Curran Associates, Inc., Red Hook,
New York, 2011.
pdf.
[4] B. Petreska, B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and
M. Sahani.
Dynamical segmentation of single trials from population neural data.
In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, eds., Advances
in Neural Information Processing Systems, vol. 24, pp. 756–764. Curran Associates, Inc., Red Hook,
New York, 2011.
pdf.
[5] A. Afshar, G. Santhanam, B. M. Yu, S. I. Ryu, M. Sahani∗, and K. V. Shenoy∗.
Single-trial neural correlates of arm movement preparation.
Neuron, 71(3):555–564, 2011.
∗ equal contributions.
doi comment.
[6] K. V. Shenoy, M. T. Kaufman, M. Sahani, and M. M. Churchland.
A dynamical systems view of motor preparation: Implications for neural prosthetic system
design.
In A. Green, E. Chapman, J. F. Kalaska, and F. Lepore, eds., Progress in Brain Research: Enhancing
Performance for Action and Perception, vol. 192, pp. 33–59. Elsevier, 2011.
doi.
[7] M. M. Churchland, B. M. Yu, J. P. Cunningham, L. P. Sugrue, M. R. Cohen, G. S. Corrado,
W. T. Newsome, A. M. Clark, P. Hosseini, B. B. Scott, D. C. Bradley, M. A. Smith, A. Kohn, J. A.
Movshon, K. M. Armstrong, T. Moore, S. W. Chang, L. H. Snyder, S. G. Lisberger, N. J. Priebe,
I. M. Finn, D. Ferster, S. I. Ryu, G. Santhanam, M. Sahani, and K. V. Shenoy.
Stimulus onset quenches neural variability: a widespread cortical phenomenon.
Nature Neuroscience, 13(3):369–378, 2010.
pdf doi.
[8] B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy∗, and M. Sahani∗.
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity.
Journal of Neurophysiology, 102:614–635, 2009.
∗ equal contributions.
doi pdf.
[9] B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani.
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds., Advances in Neural Information
Processing Systems, vol. 21, pp. 1881–1888. Curran Associates, Inc., Red Hook, New York, 2009.
pdf.
[10] J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani.
Inferring neural firing rates from spike trains using Gaussian processes.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., Advances in Neural Information Processing
Systems, vol. 20. Curran Associates, Inc., Red Hook, New York, 2008.
pdf.
[11] J. P. Cunningham, K. V. Shenoy, and M. Sahani.
Fast Gaussian process methods for point process intensity estimation.
In ICML 2008: Proceedings, Twenty-Fifth International Conference on Machine Learning, pp. 192–199.
Omnipress, Madison, Wisconsin, 2008.
pdf.
[12] M. M. Churchland, B. M. Yu, M. Sahani, and K. V. Shenoy.
Techniques for extracting single-trial activity patterns from large-scale neural recordings.
Current Opinion in Neurobiology, 17(5):609–618, 2007.
doi pdf.
[13] B. M. Yu, A. Afshar, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani.
Extracting dynamical structure embedded in neural activity.
In Y. Weiss, B. Schölkopf, and J. Platt, eds., Advances in Neural Information Processing Systems,
vol. 18, pp. 1545–1552. MIT Press, Cambridge, Massachusetts, 2006.
pdf.
[14] B. Pesaran, J. S. Pezaris, M. Sahani, P. P. Mitra, and R. A. Andersen.
Temporal structure in neuronal activity during working memory in macaque parietal
cortex.
Nature Neuroscience, 5(8):705–816, 2002.
doi.
[1] G. B. Christianson, M. Sahani, and J. F. Linden.
Depth-dependent temporal response properties in core auditory cortex.
Journal of Neuroscience, 31(36):12837–12848, 2011.
pdf doi.
[2] B. Englitz, M. Ahrens, S. Tolnai, R. Rübsamen, M. Sahani, and J. Jost.
Multilinear models of single cell responses in the medial nucleus of the trapezoid body.
Network: Computation in Neural Systems, 21(1-2):91–124, 2010.
pdf doi.
[3] M. B. Ahrens, J. F. Linden, and M. Sahani.
Nonlinearities and contextual influences in auditory cortical responses modeled with
multilinear spectrotemporal methods.
Journal of Neuroscience, 28(8):1929–1942, 2008.
doi pdf.
[4] M. B. Ahrens, L. Paninski, and M. Sahani.
Inferring input nonlinearities in neural encoding models.
Network: Computation in Neural Systems, 19(1):35–67, 2008.
doi pdf.
[5] G. B. Christianson, M. Sahani, and J. F. Linden.
The consequences of response nonlinearities for interpretation of spectrotemporal receptive
fields.
Journal of Neuroscience, 28(2):446–455, 2008.
doi.
[6] J. F. Linden, R. C. Liu, M. Sahani, C. E. Schreiner, and M. M. Merzenich.
Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
Journal of Neurophysiology, 90(4):2660–2675, 2003.
doi.
[7] M. Sahani and J. F. Linden.
Evidence optimization techniques for estimating stimulus-response functions.
In S. Becker, S. Thrun, and K. Obermayer, eds., Advances in Neural Information Processing Systems,
vol. 15, pp. 301–308. MIT Press, Cambridge, Massachusetts, 2003.
pdf ps.gz.
[8] M. Sahani and J. F. Linden.
How linear are auditory cortical responses?
In S. Becker, S. Thrun, and K. Obermayer, eds., Advances in Neural Information Processing Systems,
vol. 15, pp. 109–116. MIT Press, Cambridge, Massachusetts, 2003.
pdf ps.gz.
[1] B. M. Yu, G. Santhanam, M. Sahani, and K. V. Shenoy.
Neural decoding for motor and communication prostheses.
In K. G. Oweiss, ed., Statistical Signal Processing for Neuroscience, pp. 219–263. Elsevier, 2010.
[2] G. Santhanam, B. M. Yu, V. Gilja, S. I. Ryu, A. Afshar, M. Sahani, and K. V. Shenoy.
Factor-analysis methods for higher-performance neural prostheses.
Journal of Neurophysiology, 102:1315–1330, 2009.
doi.
[3] G. Santhanam, B. M. Yu, V. Gilja, S. I. Ryu, A. Afshar, M. Sahani, and K. V. Shenoy.
A factor-analysis decoder for high-performance neural prostheses.
In ICASSP’08: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2008, pp. 5208–11, 2008.
pdf.
[4] B. M. Yu, J. P. Cunningham, K. V. Shenoy, and M. Sahani.
Neural decoding of movements: From linear to nonlinear trajectory models.
In Neural Information Processing – ICONIP 2007, Proceedings, Part I, Lecture Notes in Computer
Science, pp. 586–595. Springer, 2008.
doi pdf.
[5] B. M. Yu, C. Kemere, G. Santhanam, A. Afshar, S. I. Ryu, T. H. Meng, M. Sahani∗, and K. V.
Shenoy∗.
Mixture of trajectory models for neural decoding of goal-directed movements.
Journal of Neurophysiology, 97(5):3763–3780, 2007.
∗ equal contributions.
doi pdf.
[6] B. M. Yu, K. V. Shenoy, and M. Sahani.
Expectation propagation for inference in non-linear dynamical models with Poisson
observations.
In Proceedings of the Nonlinear Statistical Signal Processing Workshop. IEEE, 2006.
pdf.
[7] C. Kemere, M. Sahani, and T. Meng.
Robust neural decoding of reaching movements for prosthetic systems.
In Proceedings of the 25th Annual International Conference of the IEEE EMBS, vol. 3, pp. 2079–2082,
2003.
pdf.
[1] L. Buesing, J. H. Macke, and M. Sahani.
Spectral learning of linear dynamics from generalised-linear observations with application
to neural population data.
In P. Bartlett, F. C. N. Pereira, L. Bottou, C. J. C. Burges, and K. Q. Weinberger, eds., Advances
in Neural Information Processing Systems, vol. 25, 2012.
[2] L. Buesing, J. H. Macke, and M. Sahani.
Learning stable, regularised latent models of neural population dynamics.
Network: Computation in Neural Systems, 23(1–2):24–47, 2012.
pdf doi.
[3] G. Mysore and M. Sahani.
Variational inference in non-negative factorial hidden Markov models for efficient audio
source separation.
In ICML 2012: Proceeding, Twenty-Ninth International Conference on Machine Learning. Omnipress,
Madison, WI, 2012.
pdf.
[4] R. E. Turner and M. Sahani.
Decomposing signals into a sum of amplitude and frequency modulated sinusoids using
probabilistic inference.
In ICASSP’12: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2012.
pdf.
[5] R. E. Turner and M. Sahani.
Probabilistic amplitude and frequency demodulation.
In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, eds., Advances
in Neural Information Processing Systems, vol. 24, pp. 981–989. Curran Associates, Inc., Red Hook,
New York, 2011.
pdf.
[6] R. E. Turner and M. Sahani.
Two problems with variational expectation maximisation for time-series models.
In D. Barber, A. T. Cemgil, and S. Chiappa, eds., Bayesian Time Series Models. Cambridge University
Press, 2011.
pdf.
[7] J. Lücke, R. E. Turner, M. Sahani, and M. Henniges.
Occlusive components analysis.
In Advances in Neural Information Processing Systems, vol. 22. Curran Associates, Inc., Red Hook,
New York, 2009.
pdf.
[8] P. Berkes, R. E. Turner, and M. Sahani.
A structured model of video reproduces primary visual cortical organisation.
PLoS Computational Biology, 5(9):e1000495, 2009.
pdf doi.
[9] P. Berkes, R. E. Turner, and M. Sahani.
On sparsity and overcompleteness in image models.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., Advances in Neural Information Processing
Systems, vol. 20. Curran Associates, Inc., Red Hook, New York, 2008.
pdf.
[10] J. Lücke and M. Sahani.
Maximal causes for non-linear component extraction.
Journal of Machine Learning Research, 9:1227–1267, 2008.
journal pdf.
[11] J. Lücke and M. Sahani.
Generalized softmax networks for non-linear component extraction.
In J. Marques de Sá, L. A. Alexandre, W. Duch, and D. Mandic., eds., Artificial Neural Networks –
ICANN 2007 Proceedings, Part I, Lecture Notes in Computer Science, pp. 657–667. Springer, Berlin,
2007.
doi pdf.
[12] R. E. Turner and M. Sahani.
A maximum-likelihood interpretation for slow feature analysis.
Neural Computation, 19(4):1022–1038, 2007.
doi.
[13] B. M. Yu, K. V. Shenoy, and M. Sahani.
Expectation propagation for inference in non-linear dynamical models with Poisson
observations.
In Proceedings of the Nonlinear Statistical Signal Processing Workshop. IEEE, 2006.
pdf.
[1] G. Mysore and M. Sahani.
Variational inference in non-negative factorial hidden Markov models for efficient audio
source separation.
In ICML 2012: Proceeding, Twenty-Ninth International Conference on Machine Learning. Omnipress,
Madison, WI, 2012.
pdf.
[2] R. E. Turner and M. Sahani.
Decomposing signals into a sum of amplitude and frequency modulated sinusoids using
probabilistic inference.
In ICASSP’12: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2012.
pdf.
[3] R. E. Turner and M. Sahani.
Probabilistic amplitude and frequency demodulation.
In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, eds., Advances
in Neural Information Processing Systems, vol. 24, pp. 981–989. Curran Associates, Inc., Red Hook,
New York, 2011.
pdf.
[4] R. E. Turner and M. Sahani.
Demodulation as probabilistic inference.
IEEE Transactions on Audio, Speech and Language Processing, 19(8):2398–2411, 2011.
doi pdf.
[5] R. E. Turner and M. Sahani.
Two problems with variational expectation maximisation for time-series models.
In D. Barber, A. T. Cemgil, and S. Chiappa, eds., Bayesian Time Series Models. Cambridge University
Press, 2011.
pdf.
[6] R. E. Turner and M. Sahani.
Statistical inference for single- and multi-band probabilistic amplitude demodulation.
In ICASSP’10: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2010.
pdf.
[7] R. E. Turner and M. Sahani.
Modeling natural sounds with modulation cascade processes.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., Advances in Neural Information Processing
Systems, vol. 20. Curran Associates, Inc., Red Hook, New York, 2008.
pdf.
[8] R. E. Turner and M. Sahani.
Probabilistic amplitude demodulation.
In Independent Component Analysis and Signal Separation, Lecture Notes in Computer Science, pp.
544–551. Springer, 2007.
Best student paper award.
doi pdf.
[9] R. E. Turner and M. Sahani.
A maximum-likelihood interpretation for slow feature analysis.
Neural Computation, 19(4):1022–1038, 2007.
doi.
[10] B. M. Yu, K. V. Shenoy, and M. Sahani.
Expectation propagation for inference in non-linear dynamical models with Poisson
observations.
In Proceedings of the Nonlinear Statistical Signal Processing Workshop. IEEE, 2006.
pdf.