Small Print
The documents distributed here have been provided as a means to ensure timely
dissemination of scholarly and technical work on a noncommercial basis.
Copyright and all rights therein are maintained by the authors or by other
copyright holders, notwithstanding that they have offered their works here
electronically. It is understood that all persons copying this information
will adhere to the terms and constraints invoked by each author's copyright.
These works may not be reposted without the explicit permission of the
copyright holder. ( Notice borrowed from Dave Plaut ).
2014
-
Dayan P (2014)
Rationalizable irrationalities of choice
Topics in Cognitive Science doi:
10.1111/tops.12082
-
Dayan P & Berridge KC (2014)
Model-based and model-free Pavlovian
reward learning: Revaluation, revision, and revelation
Cognitive, Affective, & Behavioral Neuroscience doi:
10.3758/s13415-014-0277-8
-
Guez, A, Silver, D & Dayan P
(2014)
Better Optimism By Bayes: Adaptive Planning
with Rich Models
arXiv doi:
arXiv:1402.1958
-
Guitart-Masip M, Duzel E, Dolan R & Dayan P
(2014)
Action versus valence in decision making
Trends in Cognitive Sciences doi:
10.1016/j.tics.2014.01.003
-
Guitart-Masip M, Economides M, Huys QJ, Frank MJ, Chowdhury R, Duzel E,
Dayan P & Dolan RJ (2014)
Differential, but not opponent, effects of
L-DOPA and citalopram on action learning with reward and
punishment.
Psychopharmacology doi: 10.1007/s00213-013-3313-4
-
Manley H, Dayan P & Diedrichsen J (2014)
When money is not enough: awareness, success,
and variability in motor learning.
PLoS ONE doi:
10.1371/journal.pone.0086580
-
Niyogi RK, Breton Y-A, Solomon RB, Conover K, Shizgal P, Dayan P
(2014)
Optimal indolence: a normative microscopic
approach to work and leisure
Journal of the Royal Society Interface doi:
10.1098/rsif.2013.0969
-
Savin C, Dayan P & Lengyel M (2014)
Optimal recall from bounded metaplastic
synapses: predicting functional adaptations in hippocampal area CA3.
PLoS Computational Biology doi:
10.1371/journal.pcbi.1003489
-
Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J,
Schreiber LR, Gillan C, Fineberg NA, Sahakian BJ, Robbins TW,
Harrison NA, Wood J, Daw ND, Dayan P, Grant JE, Bullmore ET (2014)
Disorders of compulsivity: a common bias
towards learning habits.
Molecular Psychiatry doi: 10.1038/mp.2014.44
2013
-
Beierholm U, Guitart-Masip M, Economides M, Chowdhury R, Duzel E, Dolan
R, Dayan P (2013)
Dopamine modulates reward related vigor.
Neuropsychopharmacology
doi: 10.1038/npp.2013.48
-
Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys Q, Duzel E &
Dolan RJ. (2013)
Dopamine restores reward prediction errors
in old age.
Nature Neuroscience
doi: 10.1038/nn.3364
-
Dolan RJ & Dayan P (2013)
Goals and Habits in the Brain
Neuron
doi: 10.1016/j.neuron.2013.09.007
-
Guez A, Silver D & Dayan P (2013)
Scalable and Efficient Bayes-Adaptive Reinforcement
Learning Based on Monte-Carlo Tree Search
Journal of AI Research doi: 10.1613/jair.4117
   [31/3/2016: correcting a couple of typos]
-
Hunt JJ, Dayan P & Goodhill GJ (2013)
Sparse Coding Can Predict Primary Visual
Cortex Receptive Field Changes Induced by Abnormal Visual
Input
PLoS Computational Biology
doi: 10.1371/journal.pcbi.1003005a
-
Huys QJM, Pizzagalli DA, Bogdan R & Dayan P (2013)
Mapping anhedonia onto reinforcement
learning: a behavioural meta-analysis
Biology of Mood & Anxiety Disorders
doi: 10.1186/2045-5380-3-12
-
Kurniawan IT, Guitart-Masip M, Dayan P & Dolan RJ (2013)
Effort and valuation in the brain: the
effects of anticipation and execution.
Journal of Neuroscience
doi: 10.1523/JNEUROSCI.4777-12.2013
-
Qian N & Dayan P (2013)
The company they keep: Background
similarity influences transfer of aftereffects from second- to
first-order stimuli
Vision Research
doi: 10.1016/j.visres.2013.05.008
2012
-
Coen-Cagli R, Dayan P, Schwartz O (2012)
Cortical surround interactions and perceptual
salience via natural scene statistics.
PLoS Computational Biology
doi: 10.1371/journal.pcbi.1002405
-
Dayan P (2012)
How to set the switches on this thing.
Current Opinion in Neurobiology
doi:10.1016/j.conb.2012.05.011
-
Dayan P (2012)
Instrumental vigour in punishment and reward.
European Journal of Neuroscience
doi: 10.1111/j.1460-9568.2012.08026.x
-
Dayan P (2012)
Twenty-five lessons from computational
neuromodulation.
Neuron
doi: 10.1016/j.neuron.2012.09.027,
-
Dayan P & Walton ME (2012)
A step-by-step guide to dopamine.
Biological Psychiatry
doi: 10.1016/j.biopsych.2012.03.008
-
Guitart-Masip M, Chowdhury R, Sharot T, Dayan P, Duzel E & Dolan RJ
(2012)
Action controls
dopaminergic enhancement of reward representations.
PNAS
doi: 10.1073/pnas.1202229109
-
Guitart-Masip M, Huys QJ, Fuentemilla L, Dayan P, Duzel E & Dolan RJ
(2012).
Go and no-go learning in reward and punishment:
Interactions between affect and effect.
Neuroimage
doi: 10.1016/j.neuroimage.2012.04.024
-
Huys QJ, Eshel N, O'Nions E, Sheridan L, Dayan P & Roiser JP (2012)
Bonsai trees in your head: How the pavlovian
system sculpts goal-directed choices by pruning decision trees.
PLoS Computational Biology
doi:10.1371/journal.pcbi.1002410
-
Montague PR, Dolan RJ, Friston KJ & Dayan P (2012)
Computational psychiatry.
Trends in Cognitive Science doi:10.1016/j.tics.2011.11.018
-
Niv Y, Edlund, JA, Dayan, P & O'Doherty, JP (2012)
Neural prediction errors reveal a risk-sensitive
reinforcement-learning process in the human brain.
Journal of Neuroscience doi: 10.1523/JNEUROSCI.5498-10.2012
-
Seymour B, Daw ND, Roiser, RP, Dayan P & Dolan RJ (2012)
Serotonin selectively modulates reward value
in human decision-making.
Journal of Neuroscience doi: 10.1523/JNEUROSCI.0053-12.201
-
Shiner T, Seymour B, Symmonds M, Bhatia KP, Dayan P & Dolan RJ
(2012)
The effect of motivation on movement: A study
of bradykinesia in Parkinson's disease
PLoS One doi: 10.1371/journal.pone.0047138
-
Shiner T, Seymour B, Wunderlich K, Hill C, Bhatia KP, Dayan P & Dolan RJ
(2012)
Dopamine and performance in a reinforcement
learning task: evidence from Parkinson's disease.
Brain doi: 10.1093/brain/aws083
-
Wunderlich K, Dayan P & Dolan RJ (2012)
Mapping value based planning and
extensively trained choice in the human brain.
Nature Neuroscience doi:10.1038/nn.3068
-
Xu, H, Liu, P, Dayan, P & Qian N (2012)
Multi-level visual adaptation: Dissociating
curvature and facial-expression aftereffects produced by the same
adapting stimuli .
Vision Reseach doi:10.1016/j.visres.2012.09.003
2011
-
Boureau Y-L & Dayan P (2011)
Opponency revisited: Competition and cooperation between
dopamine and serotonin.
Neuropsychopharmacology doi:10.1038/npp.2010.151.
-
Daw ND, Gershman SJ, Seymour B, Dayan P & Dolan RJ (2011)
Model-based influences on humans' choices and striatal
prediction errors.
Neuron doi:10.1016/j.neuron.2011.02.027
-
Guitart-Masip M, Beierholm UR, Dolan R, Duzel E & Dayan P (2011)
Vigor in the face of fluctuating rates of reward: An
experimental examination.
Journal of Cognitive Neuroscience Epub ahead of print.
-
Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJ, Dayan P, Dolan RJ & Duzel E
(2011)
Action dominates valence in anticipatory
representations in the human striatum and dopaminergic midbrain.
Journal of Neuroscience doi: 10.1523/JNEUROSCI.6376-10.2011
-
Huys QJ, Cools R, Golzer M, Friedel E, Heinz A, Dolan RJ & Dayan P
(2011)
Disentangling the roles of approach, activation
and valence in
instrumental and Pavlovian responding.
PLoS Computational
Biology doi: 10.1371/journal.pcbi.1002028
-
Mortimer D, Dayan P, Burrage K & Goodhill GJ (2011)
Bayes-optimal chemotaxis.
Neural Computation doi: 10.1162/NECO_a_00075
-
Moutoussis M, Bentall RP, El-Deredy W & Dayan P (2011)
Bayesian modelling of Jumping-to-Conclusions bias
in delusional patients.
Cognitive Neuropsychiatry doi: 10.1080/13546805.2010.548678
-
Sanborn AN & Dayan P (2011).
Optimal decisions for contrast
discrimination.
Journal of Vision doi:10.1167/11.14.9
2010
2009
2008
-
Daw ND, Courville AC & Dayan P (2008)
Semi-rational models of
conditioning: The case of trial order.
In Chater N & Oaksford M, editors, The Probabilistic Mind:
Prospects for Bayesian Cognitive Science New York, NY: OUP,
427-448.
-
Dayan P (2008)
The role of value systems in decision
making.
In Engel C & Singer W, editors, Better than Conscious? Decision
Making, the Human Mind, and Implications for Institutions
Frankfurt, Germany: MIT Press, 51-70.
-
Dayan P (2008)
Simple substrates for complex cognition.
Frontiers in Neuroscience 2 255-263.
-
Dayan P (2008)
Load and attentional Bayes.
NIPS 2008.
-
Dayan P & Daw ND (2008)
Decision theory, reinforcement learning, and the
brain.
Cognitive, Affective & Behavioral Neuroscience
8 429-453.
-
Dayan P & Huys QJM (2008)
Serotonin, inhibition and negative mood.
Public Library of Science: Computational Biology 4
e4.
-
Dayan P & Niv Y (2008)
Reinforcement learning: The good, the bad and
the ugly.
Current Opinion in Neurobiology 18 185-196.
-
de Lucia, M, Fritschy, J, Dayan, P & Holder, DS (2008)
A novel method for automated classification of the human
Electroencephalogram based on Independent Component Analysis.
Medical &
Biological Engineering & Computing 46 263-272.
-
Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P & Thiele A
(2008)
Acetylcholine contributes through muscarinic receptors to attentional
modulation in V1
Nature 454 1110-1114.
-
Huys QJM, Vogelstein J & Dayan P (2008)
Psychiatry: Insights into depression through
normative decision-making models.
NIPS 2008.
-
Moazzezi R & Dayan P (2008)
Change-based inference for invariant discrimination.
Network 19 236-252.
-
Moutoussis, M, Bentall, RP, Williams, J & Dayan P (2008)
A temporal difference account of avoidance learning.
Network 19 137-160.
-
Natarajan R, Huys QJ, Dayan P & Zemel RS (2008)
Encoding and
decoding spikes for dynamic stimuli.
Neural Computation 20 2325-2360.
-
Ray D, King-Casas B, Montague, PR & Dayan P (2008)
Bayesian model of behaviour in economic games.
NIPS 2008.
-
Talmi D, Seymour B, Dayan P & Dolan RJ (2008)
Human pavlovian-instrumental transfer.
Journal of Neuroscience 28 360-368.
-
Xu H, Dayan P, Lipkin RM & Qian N (2008)
Adaptation across the
cortical hierarchy: low-level curve adaptation affects high-level
facial-expression judgments.
Journal of Neuroscience 28 3374-3383.
2007
-
Dayan, P (2007)
Bilinearity, rules and prefrontal cortex.
Frontiers in Computational Neuroscience 1 1.
-
De Lucia M, Fritschy J, Dayan P & Holder DS (2007)
A novel method for automated classification of
epileptiform activity in the
human electroencephalogram-based on independent component analysis.
Medical & Biological Engineering & Computing
10.1007/s11517-007-0289-4.
-
Hsu, A & Dayan, P (2007)
An unsupervised learning model of neural
plasticity: Orientation selectivity in goggle-reared kittens.
Vision Research 47 2868-2877.
-
Huys, QJM, Zemel, RS, Natarajan, R & Dayan, P (2007)
Fast population coding.
Neural Computation 19 404-441.
-
Lengyel, M & Dayan P (2007)
Hippocampal contributions to control: The
third way
NIPS 2007
-
Moutoussis M, Williams J, Dayan P & Bentall RP (2007)
Persecutory delusions and the conditioned avoidance
paradigm: towards an
integration of the psychology and biology of paranoia.
Cognitive Neuropsychiatry 12 495-510.
-
Schwartz, O, Hsu, A & Dayan, P (2007)
Space and time in visual context
Nature Reviews Neuroscience 8 522-535.
-
Seymour, B, Daw, ND, Dayan, P, Singer, T & Dolan, RJ (2007)
Differential encoding of losses and gains in the
human striatum.
Journal of Neuroscience
27 4826-4831.
2006
-
Daw, ND, O'Doherty, JP, Dayan, P, Seymour, B & Dolan, RJ
(2006)
Cortical substrates for exploratory
decisions in humans.
Nature 441 876-879.
-
Dayan, P
(2006)
Images, frames and connectionist hierarchies.
Neural Computation 18 2293-2319.
-
Dayan, P, Niv, Y, Seymour, BJ & Daw, ND
(2006)
The misbehavior of
value and the discipline of the will.
Neural Networks 19 1153-1160.
-
Dayan, P & Yu, AJ
(2006)
Phasic norepinephrine: A neural interrupt
signal for unexpected events.
Network 17 335-350.
-
Gruber, AJ, Dayan, P, Gutkin BS & Solla, SA
(2006)
Dopamine modulation in the basal ganglia
locks the gate to working memory.
Journal of Computational Neuroscience 20 153-166.
-
Lengyel, M & Dayan P
(2006)
Uncertainty, phase and oscillatory
hippocampal recall
NIPS 2006
-
Niv, Y, Daw, ND & Dayan, P
(2006)
Choice values.
Nature Neuroscience 9 987-988.
-
Niv, Y, Daw, ND, Joel, D & Dayan, P
(2006)
Tonic dopamine:
Opportunity costs and the control of response vigor.
Psychopharmacology DOI: 10.1007/s00213-006-0502-4
-
Niv, Y, Joel, D & Dayan, P
(2006)
A normative perspective on
motivation.
Trends in Cognitive Science 8 375-381.
-
Schwartz, O, Sejnowski, TJ & Dayan, P
(2006)
Soft mixer assignment in
a hierarchical generative model of natural scene statistics.
Neural Computation 18 2680-2718.
-
Zhaoping, L & Dayan, P
(2006)
Pre-attentive visual selection.
Neural Networks 19 1437-1439.
2005
-
Daw, ND, Niv, Y & Dayan, P (2005)
Actions, policies, values, and the
basal ganglia.
In Bezard, editor, Recent Breakthroughs
in Basal Ganglia Research. New York, NY: Nova Science
Publishers.
-
Daw, ND, Niv, Y & Dayan, P (2005)
Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral
control.
Nature Neuroscience 8 1704-1711.
-
Latham, PE & Dayan, P (2005)
The feeling of choice.
Nature Neuroscience 8 408-409.
-
Lengyel, M, Kwag, J, Paulsen, O & Dayan, P
(2005).
Matching storage and recall: hippocampal spike timing-dependent
plasticity and phase response curves.
Nature Neuroscience 8 1677-1683.
-
Niv, Y, Duff, MO & Dayan, P (2005)
Dopamine, uncertainty and TD
learning.
Behavioral and Brain Functions 1 6.
-
Williams, J & Dayan, P (2005)
Dopamine, learning, and impulsivity:
A biological account of attention-deficit/hyperactivity disorder.
Journal of Child and Adolescent Psychopharmacology 15
160-179.
-
Yu, AJ & Dayan, P (2005)
Uncertainty, neuromodulation, and
attention.
Neuron 46 681-692.
2004
-
Daw, ND & Dayan, P (2004).
Matchmaking.
Science 304 1753-1754.
-
Dayan, P (2004).
Pattern formation and cortical maps.
Journal of Physiology, Paris 97 475-489.
-
Káli, S & Dayan, P (2004)
Off-line replay maintains declarative
memories in a model of hippocampal-neocortical interactions.
Nature Neuroscience 7, 286-294.
See also Káli & Dayan
(2002).
-
Lengyel, M & Dayan, P (2004)
Rate- and phase-coded autoassociative
memory.
NIPS 2004.
-
O'Doherty, J, Dayan, P, Schultz, J, Deischmann, R, Friston, K &
Dolan, RJ (2004)
Dissociable roles of ventral and dorsal striatum in
instrumental conditioning.
Science 304 452-454.
-
Schwartz, O, Sejnowski, TJ & Dayan, P (2004)
Assignment of multiplier mixture variables
in natural scene.
NIPS 2004.
-
Seymour, B, O'Doherty, JP, Dayan, P, Koltzenburg, M,
Jones, AK, Dolan, RJ, Friston, KJ & Frackowiak, R (2004)
Temporal difference models describe
higher order learning in humans.
Nature 429 664-667.
-
Yu, AJ & Dayan, P (2004)
Inference, attention, and decision in a
Bayesian neural architecture.
NIPS 2004.
-
Zemel, RS, Huys, QJM, Natarajan, R & Dayan, P
(2004)
Probabilistic
computation in spiking populations.
NIPS 2004.
2003
-
Dayan, P, Hausser, M & London, M (2003)
Plasticity kernels and temporal statistics.
NIPS 2003.
-
Dayan, P & Yu, AJ (2003).
Uncertainty and learning.
IETE Journal of Research 49, 171-182.
-
Gruber, AJ, Dayan, P, Gutkin, BS & Solla, SA (2003)
Dopamine modulation in a basal ganglio-cortical
network of working memory.
NIPS 2003.
-
O'Doherty, J, Dayan, P, Friston, K, Critchley, H & Dolan, R
(2003).
Temporal difference models and reward-related
learning in the human brain.
Neuron 38, 329-337.
-
Pouget, A, Dayan, P & Zemel, RS (2003)
Inference and computation with
population codes.
Annual Review of Neuroscience 26, 381-410.
-
Zhaoping, L, Herzog, MH & Dayan, P (2003).
Quadratic ideal
observation and recurrent preprocessing in perceptual
learning.
Network 14, 233-247.
2002
-
Dayan, P (2002).
Matters temporal.
Trends in Cognitive Sciences, 6, 105-106.
-
Daw, ND, Kakade, S & Dayan, P (2002).
Opponent interactions between
serotonin and dopamine.
Neural Networks 15, 603-616.
-
Dayan, P & Balleine, BW (2002).
Reward, motivation and reinforcement learning.
Neuron 36, 285-298.
-
Dayan, P, Sahani, M & Deback, G (2002).
Adaptation and unsupervised
learning.
NIPS 2002.
-
Foster, DJ & Dayan, P (2002).
Structure in the space of value
functions.
Machine Learning 49, 325-246.
-
Kakade, S & Dayan, P (2000a).
Acquisition and extinction in
autoshaping.
Psychological Review 109, 533-544.
-
Káli, S & Dayan, P (2002)
Replay, repair and consolidation.
NIPS 2002.
-
Kakade, S & Dayan, P (2002).
Dopamine: Generalization and bonuses.
Neural Networks 15, 549-559.
-
Yu, AJ & Dayan, P (2002).
Acetylcholine in cortical inference.
Neural Networks 15, 719-730.
-
Yu, AJ & Dayan, P (2002).
Expected and unexpected uncertainty. ACh and
NE in the neocortex.
NIPS 2002.
2001
-
Dayan, P (2001a).
Levels of analysis in neural
modeling.
Encyclopedia of Cognitive Science. London,
England: MacMillan Press.
-
Dayan, P (2001b).
Motivated reinforcement learning.
NIPS 2001.
-
Dayan, P (2001c).
Reinforcement learning.
In CR Gallistel, editor, Steven's Handbook of Experimental
Psychology New York, NY: Wiley.
-
Dayan P & Watkins, CJCH (2001).
Reinforcement learning.
Encyclopedia of Cognitive Science London, England:
MacMillan Press.
-
Dayan, P & Yu, A (2001).
ACh, uncertainty, and cortical
inference.
NIPS 2001.
2000
-
Dayan, P (2000a).
Helmholtz machines and wake-sleep
learning.
In M Arbib, editor, Handbook of Brain Theory and Neural
Networks, 2. Cambridge, MA: MIT Press.
-
Dayan, P (2000c).
Competition and arbors in ocular
dominance.
NIPS 2000.
-
Dayan, P & Kakade, S (2000).
Explaining away in weight space.
NIPS 2000.
-
Dayan, P, Kakade, S & Montague, PR (2000).
Learning and selective attention.
Nature Neuroscience, 3 , 1218-1223.
-
Foster, DJ, Morris, RGM & Dayan, P (2000).
Models of hippocampally dependent
navigation using the temporal difference learning rule.
Hippocampus, 10, 1-16.
-
Kakade, S & Dayan, P (2000b).
Dopamine bonuses.
NIPS 2000.
-
Káli, S & Dayan, P
(2000a).
Hippocampally-dependent consolidation
in a hierarchical model of neocortex.
NIPS 2000,
-
Káli, S & Dayan, P (2000b).
The involvement of recurrent
connections in area CA3 in establishing the properties of
place fields: A model.
Journal of Neuroscience, 20, 7463-7477.
-
Káli, S & Dayan, P (2000c).
A familiarity-based learning procedure
for the establishment of place fields in area CA3 of the rat
hippocampus.
CNS 2000.
-
Li, Z & Dayan, P (2000).
Position variance, recurrence and
perceptual learning.
NIPS 2000.
-
Pouget, A, Dayan, P & Zemel, RS (2000).
Information coding and representation
with population codes.
Nature Reviews Neuroscience, 1 , 125-132.
-
Schraudolph, NN, Dayan, P & Sejnowski, TJ (2000).
Learning to evaluate Go positions via
temporal difference methods.
In LC Jain & N Baba, editors, Soft Computing Techniques in Game
Playing. Berlin, Germany: Springer-Verlag.
1999
-
Abbott, LF & Dayan, P (1999).
The effect of correlated variability on
the accuracy of a population code.
Neural Computation, 11, 91-101.
-
Dayan, P (1999a).
Recurrent sampling models for the
Helmholtz machine.
Neural Computation, 11, 653-677.
-
Dayan, P (1999b).
Unsupervised learning.
In Wilson, RA & Keil, F, editors. The MIT Encyclopedia of the
Cognitive Sciences.
-
Dayan, P & Zemel, RS (1999).
Statistical models and sensory
attention.
In ICANN, 1999, 1017-1022.
-
Kakade, S & Dayan, P (1999).
Acquisition in autoshaping.
NIPS 1999.
-
Káli, S & Dayan, P (1999).
Spatial representations in related
environments in a recurrent model of area CA3 of the
rat.
In ICANN 1999 , 138-143.
-
Li, Z & Dayan, P (1999).
Computational differences between
asymmetrical and symmetrical networks.
Network, 10, 59-77.
-
Lin, JK & Dayan, P (1999).
Curved gaussian models with application
to modeling currency exchange rates.
In YS Abu-Mostafa, B LeBaron, AW Lo & AS Weigend, editors,
Computational Finance 99. Cambridge, MA: MIT Press.
1998
-
Dayan, P (1998a).
A hierarchical model of visual
rivalry.
Neural Computation, 10, 1119-1136.
See erratum to P1124
-
Dayan, P (1998b).
Recurrent sampling models.
In KM Wong, I King & D-Y Yeung, editors,
Theoretical Aspects of Neural Computation: A Multidisciplinary
Perspective, 287-298. Berlin: Springer.
-
Dayan, P & Long, T (1998).
Statistical models of conditioning.
In NIPS 10, 117-123.
-
Foster, DJ, Morris, RGM & Dayan, P (1998).
Hippocampal model of rat spatial abilities using
temporal difference learning.
In NIPS 10, 145-151.
-
Káli, S & Dayan, P (1998).
Formation of circularly symmetric place
fields in the rodent hippocampus.
Society for Neuroscience Abstracts, 28.
-
Li, Z & Dayan, P (1998).
Computational differences between
asymmetrical and symmetrical networks.
NIPS 1998.
-
Montague, PR & Dayan, P (1998).
Neurobiological modeling: Squeezing top
down to meet bottom up.
In W Bechtel & G Graham, editors, A Companion to Cognitive
Science.\ Oxford: Basil Blackwell, 526-542.
-
Singh, SP & Dayan, P (1998).
Analytical mean squared error curves in Temporal
Difference learning.
Machine Learning, 32, 5-40.
-
Sommer, FT & Dayan, P (1998).
Bayesian retrieval in associative memories
with storage errors.
IEEE Transactions in Neural Networks, 9, 705-713.
-
Zemel, RS & Dayan, P (1998).
Moving targets: Interpreting population responses in area MT.
Society for Neuroscience Abstracts, 28.
-
Zemel, RS & Dayan, P (1998).
Distributional population codes and
multiple motion models.,
NIPS 1998.
-
Zemel, RS, Dayan, P & Pouget A (1998).
Probabilistic interpretation of
population codes.
Neural Computation, 10, 403-430.
1997
-
Dayan, P (1997a).
A hierarchical model of visual
rivalry.
In NIPS 9, 48-54.
-
Dayan, P (1997b).
Recognition in hierarchical models.
In F Cucker & M Shub, editors,
Foundations of Computational Mathematics. Berlin, Germany:
Springer.
-
Dayan, P & Hinton, GE (1997).
Using EM for reinforcement learning.
Neural Computation, 9, 271-278.
-
Foster, DJ, Morris, RGM & Dayan, P (1997).
Hippocampal model of rat spatial abilities using temporal difference
learning.
Society for Neuroscience Abstracts, 27, 624.3.
-
Frey, BJ, Dayan, P & Hinton, GE (1997).
A simple algorithm that discovers
efficient perceptual codes.
In M Jenkin & L Harris, editors, Computation and Psychophysical
Mechanisms of Visual Coding, 296-315. Cambridge:
CUP.
-
Hinton, GE, Dayan, P & Revow, M (1997).
Modeling the manifolds of images of
handwritten digits.
IEEE Transactions on Neural Networks, 8, 65-74.
-
Neal, RM & Dayan, P (1997).
Factor Analysis using delta-rule
wake-sleep learning.
Neural Computation, 9, 1781-1803.
-
Reisenhuber, M & Dayan, P (1997).
Neural models for part-whole
hierarchies.
In NIPS 9, 661-667.
-
Schultz, W, Dayan, P & Montague, PR (1997).
A neural substrate of prediction and
reward.
Science, 275, 1593-1599.
-
Singh, SP & Dayan, P (1997).
Analytical mean squared error curves in
temporal difference learning.
In NIPS 9, 1054-1060.
-
Zemel, RS, Dayan, P & Pouget, A (1997).
Probabilistic interpretation of population
codes.
In NIPS 9, 676-682.
-
Zemel, RS & Dayan, P (1997).
Combining probabilistic population
codes.
In IJCAI 15, 1114-1119.
1996
-
Dayan, P & Hinton, GE (1996).
Varieties of Helmholtz machine.
Neural Networks, 9, 1385-1403.
-
Dayan, P & Sejnowski, TJ (1996).
Exploration bonuses and dual control.
Machine Learning, 25, 5-22.
-
Dayan, P & Singh, SP (1996a).
Improving policies without measuring
merits.
In NIPS 8, 1059-1065.
-
Dayan, P & Singh, SP (1996b).
Long term potentiation, navigation and
dynamic programming.
In CNS 96.
-
Frey, BJ, Hinton, GE & Dayan, P
(1996).
Does the wake-sleep algorithm produce
good density estimators?
In NIPS 8, 661-667.
-
Montague, PR, Dayan, P & Sejnowski, TK (1996).
A framework for mesencephalic dopamine
systems based on predictive Hebbian learning.
Journal of Neuroscience, 16, 1936-1947.
-
Oberlander, J & Dayan, P (1996).
Altered states and virtual beliefs.
In A Clark & PJR Millican, editors, Connectionism, Concepts and Folk Psychology: The Legacy of Alan Turing. Oxford, UK: Clarendon.
1995
-
Dayan, P, Hinton, GE, Neal, RM & Zemel, RS (1995).
The Helmholtz machine.
Neural Computation, 7, 889-904.
-
Dayan, P & Zemel, RS (1995).
Competition and multiple cause
models.
Neural Computation, 7, 565-579.
-
Hinton, GE, Dayan, P, Frey, BJ & Neal, RM (1995).
The wake-sleep algorithm for unsupervised
neural networks.
Science, 268, 1158-1160.
-
Hinton, GE, Dayan, P, To, A & Neal, R (1995).
The Helmholtz machine through time.
In F Fogelman-Soulie & R Gallinari, editors, ICANN-95,,
483-490.
-
Hinton, GE, Revow, M & Dayan, P (1995).
Recognizing handwritten digits using
mixtures of linear models.
In NIPS 7, 1015-1022.
-
Montague, PR, Dayan, P, Person, C & Sejnowski, TJ (1995).
Bee foraging in uncertain environments
using predictive Hebbian learning.
Nature, 377, 725-728.
-
Sejnowski, TJ, Dayan, P & Montague, PR (1995).
Predictive Hebbian learning.
Invited talk to COLT 8, 15-18.
1994
-
Dayan, P (1994).
Computational modelling.
Current Opinion in Neurobiology, 4, 212-217.
-
Dayan, P & Sejnowski, TJ (1994).
TD(
)
converges with probability 1.
Machine Learning, 14, 295-301.
-
Hinton, GE, Dayan, P, Neal, RM & Zemel, RS (1994).
Using neural networks to learn intractable generative models.
Invited paper at the 1994 meeting of the American Statistical
Association, Toronto, Canada.
-
Montague, PR, Dayan, P & Sejnowski, TJ (1994).
Foraging in an uncertain environment
using predictive Hebbian learning.
In NIPS 6, 598-605.
-
Schraudolph, N, Dayan, P & Sejnowski, TJ (1994).
Temporal difference learning of position
evaluation in the game of Go.
In NIPS 6, 817-824.
1993
-
Berns, GS, Dayan, P & Sejnowski, TJ (1993).
A correlational model for the
development of disparity in visual cortex that depends on
prenatal and postnatal phases.
Proceedings of the National Academy of Science (USA),
90, 8277-8281.
-
Dayan, P (1993a).
Arbitrary elastic topologies and ocular
dominance.
Neural Computation, 5 392-401.
-
Dayan, P (1993b).
Improving generalisation for temporal difference learning: The
successor representation.
Neural Computation, 5, 613-624.
-
Dayan, P & Hinton, GE (1993).
Feudal reinforcement learning.
In NIPS 5, 271-278.
-
Dayan, P & Sejnowski, TJ (1993).
The variance of covariance rules for
associative matrix memories and reinforcement learning.
Neural Computation, 5 205-209.
-
Montague, PR, Dayan, P, Nowlan, SJ, Pouget, A & Sejnowski, TJ
(1993).
Using aperiodic reinforcement for
directed self-organization.
In NIPS 5, 969-977.
1992
-
Berns, GS, Dayan, P & Sejnowski, TJ (1992a).
Correlation-based development of disparity sensitivity.
In F Eeckmanm, editor, Neural Systems: Analysis and
Modeling. Norwell, MA: Kluwer Academic.
-
Berns, GS, Dayan, P & Sejnowski, TJ (1992b).
Development of disparity sensitivity in a correlational-based network
model of the visual cortex requires two phases.
Society for Neuroscience Abstracts, 18.
-
Dayan, P (1992).
The convergence of TD(
) for general
.
Machine Learning, 8, 341-362.
-
Dayan, P & Goodhill, GJ (1992).
Perturbing Hebbian rules.
In NIPS 4, 19-26.
-
Montague, PR, Dayan, P & Sejnowski, TJ (1992).
Volume learning: Signalling covariance through neural tissue.
In F Eeckmanm, editor,
Neural Systems: Analysis and Modeling. Norwell, MA: Kluwer
Academic.
-
Quartz, SR, Dayan, P, Montague, PR & Sejnowski, TJ (1992).
Expectation learning in the brain using diffuse ascending
projections.
Society for Neuroscience Abstracts, 18, 1210.
-
Watkins, CJCH & Dayan, P (1992).
Q-learning.
Machine Learning, 8, 279-292.
1991
1990
-
Dayan, P (1990).
Reinforcement comparison.
In DS Touretzky, JL Elman, TJ Sejnowski & GE Hinton, editors,
Proceedings of the 1990 Connectionist Models Summer School. San
Mateo, CA: Morgan Kaufmann, 45-51.
-
Willshaw, DJ & Dayan, P (1990).
Optimal plasticity in matrix memories:
What goes up must come down.
Neural Computation, 2, 85-93.
1985
-
Robertson, MJ, Ritchie, S & Dayan, P (1985).
Semiconductor waveguides: analysis of optical propagation in single
rib structures and directional couplers.
Proceedings of the Institution of Electrical Engineers, Part J,
Optoelectronics, 132, 336-342.